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Abstract

We evaluate residual projection strategies in the context of a large-scale
macro model of the euro area and smaller benchmark time-series models. The
exercises attempt to measure the accuracy of model-based forecasts simulated
both out-of-sample and in-sample. Both exercises incorporate alternative
residual-projection methods, to assess the importance of unaccounted-for
breaks in forecast accuracy and off-model judgment. Conclusions reached are
that simple mechanical residual adjustments have a significant impact of
forecasting accuracy irrespective of the model in use, ostensibly due to the
presence of breaks in trends in the data. The testing procedure and
conclusions are applicable to a wide class of models and thus of general
Interest.

Keywords: Macro-model, Forecast Projections, Out-of-Sample, In-Sample, Forecast
Accuracy, Structural Break.

JEL Classification: C52, E30, E32, E37.
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NON-TECHNICAL SUMMARY

Is forecasting with large models useful? The question is far from trivial, since most macro-models fulfil two
(essentially conflicting) purposes: that of offering ‘good’ forecasts and at the same time ‘good’ stories. The
first goal in a forecasting institution is clear. The second, though less conspicuous, is equally important since
stories are used by staff preparing the forecast to assess their degree of mutual understanding of the resulting
numbers. Stories are also needed to impress upon the public the degree of thoughtfulness and quality in the
forecast. Policy-making is also about shaping expectations, and these cannot be properly handled if the
forecast is presented only in terms of how well it fits past data. Stories are part of policy communication,

and hence part of the credibility toolbox of policy institutions.

The alternatives to macro-models are time-series-based ones, usually of relative smaller sizes but with good
fitting and forecasting properties. These models may be less apt at the business of ‘building’ stories, but
have become the de-facto benchmarks in forecasting contests, see Stock and Watson (1999), Marcellino et
al. (2003), McAdam and McNelis (2005). Accordingly, we shall use them as such here alongside

forecasting exercises on a large macro-model.

Broadly speaking, macro-models try to capture two different economic facts: long-run static economic
relationships and the dynamics inherent in the data. The two are oftentimes handled differently, with many
models including a rigorous description of the steady-state that is sometimes at odds with the historic data;
and dynamic mechanisms that frequently fit the data considerably better. That this is so is no coincidence:
traditionally, models are made to fit the data through modelled dynamics and are made to tell stories through
their modelled economic structure. The European Central Bank’s model, the Area-Wide Model (AWM), is
such an example with a number of features of particular interest for the task at hand. First, it has a rich
steady-state embedded in it, whose complexity lies more in the fact that steady-state conditions are
endogenous rather then its sheer size. Second, it has almost-freely estimated dynamics, which ensures a
degree of congruence with the business-cycle properties of the data. In short, a perfect workhorse for the

forecasting exercise we plan.

However, one less well understood (or communicated) issue in the context of model-based forecasting is the
trade off between “free” model-based forecasting and “judgment”. Often model-based forecasters employ
judgment (i.e., shifting the residuals of behavioural equations) to impose paths that reflect some missing
feature of the model (e.g., confidence effects, omitted variables); remedy some known deficiency of the
model (e.g., unsatisfactory dynamics); or impose information on some sufficiently large idiosyncratic
shocks (e.g., labour strikes) or off-model expert judgment (e.g., leading indicators, “flash” estimates). The
imposition of judgment over an entire forecast round may reflect each or all of these or simply indicate
institutional practices (such as initializing a new forecast with the previously-imposed judgment).
Consequently judgment can turn out to be as or more important than traditionally-studied aspects of forecast

uncertainty (e.g., parameter, specification uncertainty).
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Given this, it may be considered peculiar (if not alarming) that the “black arts” of judgment strategies (e.g.
their form, strengths, weakness, justification) are rarely brought to light. The purpose of this paper therefore
is to shed light on the impact and interpretation of judgment on forecast accuracy; in short, to shine some
hard science on these black arts. Of course, an all-encompassing analysis of residual projection strategies is
a complex (and often highly model-/user- specific) task whose full analysis necessarily lies beyond our
scope. We target a more tractable, constructive goal: to assess how shifts based on plausible laws of motion

which capture off-model judgment end up affecting forecasts, particularly at long horizons.

The analysis has been carried out using two different versions of the AWM: the original model, as specified
and estimated originally, and the same model with the addition of equations for the most important
exogenous variables from a Structural Vector Auto-Regression Model (SVAR). Both were used to simulate
out-of-sample and in-sample forecasts using the original estimation dataset, and an updated and revised
dataset. Projections with the AWM were then benchmarked against alternative time-series-based models.
Furthermore, the AWM model was subjected to a simple set of plausible yet informative strategies to
project residuals, to analyze the impact of off-model information. When using the revised dataset, the
alternative models were also subjected to the preferred residual-projection strategy, based on shifting
residuals according to their mean over the preceding four periods. Using a decomposition of the Root Mean
Square Error metric, we judge the dimensions in which different models and residual projection strategies

succeed.

Based on projections for GDP growth, GDP deflator inflation and consumption deflator inflation, we
conclude: the AWM (which can be taken as an example of a large model) is neither particularly hampered
nor helped by its size when producing forecasts. Furthermore, many of the issues found using the model are
also present in smaller, time-series-based models. Taking each variable in turn: for GDP growth, residual
shifting helps in reducing forecast bias to some extent, but the increase in forecast variance brought by the
method more than outweighs those gains; for inflation, bias reduction is often sufficiently important to
actually improve outcomes. This result holds for most models used, foremost among them the AWM. Our
understanding of these findings is that GDP growth may have been slightly higher on average in the
estimation sample compared with the forecast sample, but was otherwise not strongly affected by breaks,
while inflation was more fundamentally affected by breaks between the two samples.' The exercise is
compatible with a declining trend in inflation over the estimation period and its absence in the forecast
period. Unless the trend in inflation is successfully modelled, the only way to forecast inflation with some
success is by using models that, while being potentially different from the data-generation process, are
robust to changes in trends. To empirically assess the point, the forecasting performance of simple AR
models of 1%-differences of inflation (i.e., over-differencing) is checked and found to outperform the

preferred in-sample model.

! See, for instance, Benati and Vitale (2007).
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Introduction

Is forecasting with large models useful? The question is far from trivial, since most macro-models fulfil two
(essentially conflicting) purposes: that of offering ‘good’ forecasts and at the same time ‘good’ stories. The
first goal in a forecasting institution is clear. The second, though less conspicuous, is equally important since
stories are used by staff preparing the forecast to assess their degree of mutual understanding of the resulting
numbers. Stories are also needed to impress upon the public the degree of thoughtfulness and quality in the
forecast. Policy-making is also about shaping expectations, and these cannot be properly handled if the
forecast is presented only in terms of how well it fits past data. Stories are part of policy communication,

and hence part of the credibility toolbox of policy institutions.

The alternatives to macro-models are time-series-based ones, usually of relative smaller sizes but with good
fitting and forecasting properties. These models may be less apt at the business of ‘building’ stories, but
have become the de-facto benchmarks in forecasting contests, see Stock and Watson (1999), Marcellino et
al. (2003), McAdam and McNelis (2005). Accordingly, we shall use them as such here alongside

forecasting exercises on a large macro-model.

Broadly speaking, macro-models try to capture two different economic facts: long-run static economic
relationships and the dynamics inherent in the data. The two are oftentimes handled differently, with many
models including a rigorous description of the steady-state that is sometimes at odds with the historic data;
and dynamic mechanisms that frequently fit the data considerably better. That this is so is no coincidence:
traditionally, models are made to fit the data through modelled dynamics and are made to tell stories through
their modelled economic structure. The European Central Bank’s model, the Area-Wide Model (AWM), is
such an example with a number of features of particular interest for the task at hand. First, it has a rich
steady-state embedded in it, whose complexity lies more in the fact that steady-state conditions are
endogenous rather then its sheer size. Second, it has almost-freely estimated dynamics, which ensures a
degree of congruence with the business-cycle properties of the data. In short, a perfect workhorse for the

forecasting exercise we plan.

However, one less well understood (or communicated) issue in the context of model-based forecasting is the
trade off between “free” model-based forecasting and “judgment”. Often model-based forecasters employ
judgment (i.e., shifting the residuals of behavioural equations) to impose paths that reflect some missing
feature of the model (e.g., confidence effects, omitted variables); remedy some known deficiency of the
model (e.g., unsatisfactory dynamics); or impose information on some sufficiently large idiosyncratic
shocks (e.g., labour strikes) or off-model expert judgment (e.g., leading indicators, “flash” estimates). The
imposition of judgment over an entire forecast round may reflect each or all of these or simply indicate
institutional practices (such as initializing a new forecast with the previously-imposed judgment).
Consequently judgment can turn out to be as or more important than traditionally-studied aspects of forecast

uncertainty (e.g., parameter, specification uncertainty).
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Given this, it may be considered peculiar (if not alarming) that the “black arts” of judgment strategies (e.g.
their form, strengths, weakness, justification) are rarely brought to light. The purpose of this paper therefore
is to shed light on the impact and interpretation of judgment on forecast accuracy; in short, to shine some
hard science on these black arts. Of course, an all-encompassing analysis of residual projection strategies is
a complex (and often highly model-/user- specific) task whose full analysis necessarily lies beyond our
scope. We target a more tractable, constructive goal: to assess how shifts based on plausible laws of motion

which capture off-model judgment end up affecting forecasts, particularly at long horizons.

The analysis has been carried out using two different versions of the AWM : the original model, as specified
and estimated originally, and the same model with the addition of equations for the most important
exogenous variables from a Structural Vector Auto-Regression Model (SVAR). Both were used to simulate
out-of-sample and in-sample forecasts using the original estimation dataset, and an updated and revised
dataset. Projections with the AWM were then benchmarked against alternative time-series-based models.
Furthermore, the AWM model was subjected to a simple set of plausible yet informative strategies to
project residuals, to analyze the impact of off-model information. When using the revised dataset, the
alternative models were also subjected to the preferred residual-projection strategy, based on shifting
residuals according to their mean over the preceding four periods. Using a decomposition of the Root Mean
Square Error metric, we judge the dimensions in which different models and residual projection strategies

succeed.

Based on projections for GDP growth, GDP deflator inflation and consumption deflator inflation, we
conclude: the AWM (which can be taken as an example of a large model) is neither particularly hampered
nor helped by its size when producing forecasts. Furthermore, many of the issues found using the model are
also present in smaller, time-series-based models. Taking each variable in turn: for GDP growth, residual
shifting helps in reducing forecast bias to some extent, but the increase in forecast variance brought by the
method more than outweighs those gains; for inflation, bias reduction is often sufficiently important to
actually improve outcomes. This result holds for most models used, foremost among them the AWM. Our
understanding of these findings is that GDP growth may have been slightly higher on average in the
estimation sample compared with the forecast sample, but was otherwise not strongly affected by breaks,
while inflation was more fundamentally affected by breaks between the two samples.” The exercise is
compatible with a declining trend in inflation over the estimation period and its absence in the forecast
period. Unless the trend in inflation is successfully modelled, the only way to forecast inflation with some
success is by using models that, while being potentially different from the data-generation process, are
robust to changes in trends. To empirically assess the point, the forecasting performance of simple AR
models of 1%-differences of inflation (i.e., over-differencing) is checked and found to outperform the

preferred in-sample model.

The paper proceeds as follows: Section 2 motivates the forecasting exercise; Section 3 briefly discusses the

Area Wide Model; Section 4 analyses the consequences for model-based projection exercises given

2 See, for instance, Benati and Vitale (2007).
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different residual projection strategies in the context of the AWM, whilst section 5 presents the empirical

results. Finally, we conclude.

1.  Analysis of the RMSE of the forecasts

1.1 Pitfalls in Forecasting

Hendry and Clements (1998, 1999) propose a taxonomy of potential causes for forecast failure including:

1) In-sample model mis-specification or data-based model selection;

i) Poor estimation strategies or incorrect calculation of confidence intervals;
iii) Parameters depending on policy-regime changes;

iv) Structural un-forecastable breaks, also called deterministic shifts.

To different degrees, all these factors are worth exploring in our analysis. Points i) and ii) will be assessed
by making use of alternative models to the AWM for benchmarking. Point iii) will be tackled by assessing
the degree of parameter instability in the model by re-estimating the model with an artificially expanding
sample. Point iv) will be assessed by suitable alternative residual adjustment and projection methods, with

the goal in mind of replicating un-modelled changes in trends.

1.2 The Framework

Simple residual-projection strategies will be adopted: from projections in which residuals will be set to their
in-sample average (normally around zero) to more sophisticated rules. Some of these strategies affect the
steady-state of the model by causing deterministic shifts. A statistical framework is needed to assess their
effects and understand the methodological approach taken. Let us thus assume that variables to be forecast
(e.g., output growth, inflation) are stationary. A Wold decomposition for them can then be found, see
expression (1): variable x; is decomposed into a deterministic time-varying component x4, and a stationary
moving-average of possibly infinite dimension of the process ¢, itself stationary and independently
distributed. Assume (1) represents the true data generation process of the variable to be forecast, and is thus
unknowable. Forecasts will be based on models that (hopefully) approximate process (1) but will in general
differ in one aspect or another from it. Expression (2) expresses the forecasting models, again in the form of

a Wold decomposition.

t

x,=0(L)-& +p, where i@f < oo, var(g, )= o2 < (1)

x,=¢(L)-n, +v,, where i o] <o, var(y,)=o0, < @)
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Forecasts with the models are as in (3), in which fth is a stochastic forecast obtained from (2) 4 steps

ahead. The error process in the forecast period is assumed to be given by a deterministic rule (such as e.g.
77th =0, for # belonging to the forecast horizon). It is important to stress that forecasts are stochastic because
of their conditioning on past information, itself stochastic, not because stochastic simulations will be run
with the models. The fact that residual projection is deterministic means that the forecasts will sooner or

later converge to a deterministic process with unit probability.

fth = E[xt | {xtfhﬂxt—hfl""}’(o(L)’ UU]E E [xt] = (D(L)' 77zh + Vth (3)

One important aspect of the comparison between (1) and (2) is that they can be used to formalize some

potentially important sources of forecast failure. Namely, there could be a false description of trends on the
one hand (g, #v,), and a false description of the law of motion of the variable on the other

(H(L) * ¢(L)). While the latter could lead to bad forecast performance in short-horizon forecasts, the

former could have a much longer-lasting influence. In what follows, strategies to project residuals will be

explicitly linked to the sources of forecast failure tackled in each case.

Note that the taxonomy of forecast errors described is better used with models whose dynamics are well
adapted to the intrinsic dynamics in the data. If instead the dynamics in the model are strongly mis-
specified’, identifying un-forecastable breaks is significantly more challenging, as errors in forecasting
trended behaviour and dynamics get blended. It is true that errors in the modelled dynamics will only affect
forecast accuracy in the short- to medium-run, but the relatively short samples used in the paper may be
insufficient to offset the effects of badly-modelled dynamics. Some care will thus be taken in modelling
properly the dynamics of all the models. We are now in a position to understand how forecast errors will be

analyzed.

1.3 A RMSE Decomposition

Assuming that an /-step-ahead forecast fth is generated using (3), the measures of accuracy of forecast
used in the preceding sections are given by the MSE (Mean Square Error) as in (4). Reported Root Mean
Square Errors (RMSEs) are simply their root. In the expression, abusing notation, the expectation is made

conditional on information previous to the start of the forecast at 7.
>
MSE" =E(x, - £") 4

The expression for MSE leads naturally to a decomposition of the statistic using the Wold decomposition of
actual and forecast. Taking into account that E(x, -l )2 = E[(x, -4, )— ( =yl )+ (,u, —v! )]2 ,

E(xt - ,ut): 0 and E(fth - Vth )= 0, it is easy to show that expression (4) is equivalent to (5), which itself

can be rewritten as (6):

3 This could result from the imperfect modeling of those dynamics or from an explicit choice by the model builder to represent the
economy in a highly compact manner (e.g., if the model is tied to firm/consumer optimization theory).
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MSE? = E(x[ —H, )2 +E(fth _Vth )2 -2 'E[(xt _/uz).(fth _Vth) + (/u[ _Vth )2 (5)

MSE" = var(x, )+ Var(f,” )— 2. cov(x, S )+ bias’ (6)

This expression is interesting because it decomposes the MSE along components about some of which we
can a priori say something. Namely, the distributional assumptions made means that the first element is
given and outside the control of the analyst. The only hope to reduce forecast error is by ensuring that: i) no
bias is introduced in the forecast and ii) the variance of the forecast error, itself depending on the variance of
the forecast and the covariance between actual values and forecasts, is small. Note that point ii) will give

ceteris paribus the advantage to models in which Var( fth) is small, irrespective of whether the models fit

the data well. For instance, a forecast fixed at some value for all periods may be completely uncorrelated
with the actual realizations, but its null forecast variance may turn this into a powerful forecasting strategy.
The trade-off between forecast variability, its correlation with actual observations and the presence of biases

may mean that ‘wrong’ models may provide smaller forecast RMSE.
Furthermore, if the forecast procedure is deterministic (i.e., Var(ﬂth ) =0, for > T), it is easy to prove that

the variance of the forecast will shrink as the forecast horizon is increased, as shown below,

o0

var(f)=E(£" ~v!'} =Elp(z)-n" ) = Zcof varlp! )=

(7

h

=S g2 vl )+ Y02 varly! )= 3 0?02

s=0 s=h+1 s=h+1

Hence, lim Var( fth ) =0, which means that plim fth = V,h for h — oo. Obviously, the same shrinkage
h—o0

phenomenon applies to the covariance between actual and forecast outcomes. This means that in (6)all the
elements except the first and last ones converge to zero as the forecast horizon is increased. The obvious
implication is that, in long-horizon forecasts, avoiding biases is the only thing that matters. It is interesting
to find whether a sample counterpart to (6) can be found, in order to assess the relative importance of all

these factors. Unfortunately, this can be achieved only at some cost.

The sample expression for the MSE is given by (8), where it is assumed that the first forecast is done at time
0 and that the variable x, spans until period 7 and is assumed to be present for at least 4 periods before time
0. A natural extension to express the MSE decomposition as in (6) would be to replace variances and means
in the expression by their sample counterparts, as in (9). This expression, though, relies on the assumption

that means do not depend on ¢, i.e. that x, = u, Vth =v" V1, contrary to the rather eclectic underlying

assumptions made in (2). Models in which trends change a lot (perhaps reflecting behaviour in the data)
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may be disadvantaged by our choice, since in their case Var( fth) may not decrease at all as /4 increases.”

We will nevertheless use (9) to decompose shown MSEs, in the conviction that such decomposition can lead

to interesting insights.

i
T (x, - f! )2
h _ 1=0
MSE" = £ — — 8)
T—h T—h 0 T-h —

(x-%) (A -7") (v =%)-(£"=7")
MSE”:f:OT_h 4420 — — .10 — +(x-7") )
T— T-h

X, A
where x =L and f'=10 .
T-h T-h

2. The AWM: Data and Specification

The AWM treats the euro area as a single economy. Its structure is standard, having a long-run classical
equilibrium with a vertical Phillips curve but with some short-run frictions in price/wage setting, factor
demands, etc. Consequently, activity is determined in the short run by demand — given incomplete nominal
adjustment — but is determined by supply in the longer run, with employment having converged to a level
consistent with the exogenously given level of equilibrium unemployment (the NAIRU). In addition, stock-
flow adjustments are accounted for, e.g. by the inclusion of a wealth / cumulated saving term in
consumption or an explicit net foreign assets accumulation mechanism. With the exception of the forward-
looking exchange rate (modelled by uncovered interest parity, UIP) the model embodies adaptive

expectations.

The AWM is estimated using the European Central Bank’s area-wide database which has been widely used:
inter alia, Coenen and Vega (2001), Gali et al. (2001), Smets and Wouters (2003), Marcellino et al. (2003),
McAdam and Willman (2004). Applications of the model itself include examining the performance of
policy rules and the monetary transmission mechanism (Adalid et al. 2005; McAdam and Morgan, 2002),
policy making under a zero lower bound nominal interest rate constraint (Dieppe and McAdam, 2006), the

determination of real exchange-rate paths (Detken et al. 2002), etc.

The model will be taken broadly as originally estimated, i.e. using at the time a dataset that went until
around 1998Q4. Two databases have been used in the paper: initially, a simple update of the original dataset
until 1999Q4; second, a much deeper revision of the dataset until 2006Q4. The latter dataset differs from the

original one in many respects: the most recent periods are chain-linked data from Eurostat and most

* For instance, ranking of models based on their RMSE in forecasting inflation may change if changes in sample inflation means are
taken into account or ignored, irrespective of the goodness of fit of the models.
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backdates come from the SNA93 revision of the OECD. Furthermore, some series have changed their
definition, such as for instance a different split between private and Government consumption. All this adds
up to a very significant change in the data. The analysis has been carried out using the original dataset to
avoid (to the extent possible) contamination of deterministic and stochastic sources of forecast error, as the
dynamics in the AWM were fine-tuned to this specific dataset. The updated dataset is used to report an

enlarged set of results.

It remains to link the use of the model with the discussion on changing trends, point iv) in section 2.1. Our
understanding of the point is that it encompasses any change in the data-generating process leading to a new
distributional mean for the modelled variables. In terms of the AWM, this means that the joint unconditional
mean of the endogenous variables has to be identified. Considering that the AWM is mainly composed of
accounting identities and stochastic behavioural equations expressed as equilibrium corrections mechanisms
(ECM), a log-linear approximation of the model could be expressed by (10), in which y, is a set of 1(1)
endogenous variables, z, a set of I(1) exogenous variables, d, a set of deterministic variables and u, a

stochastic residual:

A(L)'Ayt :dt +B(L)-AZt _aﬂ'(xz—l _7'Zt—l)+ut (10)

Forecasts would be made of a component of Ay,, assumed stationary. The goal, to infer the presence of un-
forecastable breaks, is to discriminate between forecast errors due to shocks or to persistent changes in
underlying trends. We will distinguish between shocks and trends by defining the latter as the deterministic
long-run component of the variables. Trends will then be given by the corresponding element of the
unconditional expectation of Ay, in (10), and the stochastic part by the difference between expectation and
actual, as in (11). In this expression, the unconditional expectation E(Ay;) clearly results from solving the
model as a deterministic set of equations, i.e. Ay, - E(Ay,) is different from u, in (10).” In other words, the
expectation in (11) is given by the model's equilibrium condition for the levels of the variables and is thus a
representation of the long run of the model. It is now clear that residual projection is a natural way to

implement changes to these conditions, which is precisely what is attempted below.

Ay, =E(Ay,) +[Ay, —E(4y))]
where (11)

E(Ayt): A@)~! -[dt —B(l)-E(Azt)—aﬁ'E(xt_l —y'zt_l)]

The link between (11) and (3) results from the mapping x,=:'Ay,, u = l'E(Ay[), and
H(L) g = l'[Ayt -E (Ayt )] , Where 1 is a selection column vector that extracts variable x, from the set of

variables in Ay, . Accordingly, x, will be given by the implicit steady state of the model.

Finally, a couple of caveats are worth stressing at this stage:

5 In other words, E(Ay,) = E_(Ay,) will in general be different from E, ,(Ay,).
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i) The analysis will report potential problems in forecasting trends, implying that trends in the model may

be mis-specified; but there will be no attempt to re-estimate with alternative trend specifications;’

ii) Even though a link has been established between deterministic shifts and the steady state of the model,
what is at stake is not the steady state itself, but a decomposition of forecast errors in finite-horizon

forecasts.’

3. Description of the Exercise

The exercise consists in simulated out-of-sample exercises using the model and alternative, simpler models
as benchmarks. The overall approach taken is in the spirit of Stock and Watson (1999) and related literature.
As the AWM has a relatively dense modelling of steady-state relationships, and as there is the suspicion that
deterministic shifts may affect forecasts, alternative exercises will be run with simple shifts to the constant
in the equations of the model. To isolate effects on the forecast from re-estimating the model, the exercise is
repeated with full-sample versions of all the models involved in the exercise, in the spirit of complementing

pseudo-out-of-sample analysis with in-sample analysis, as proposed by Inoue and Kilian (2005).

The exercises have been run using two different datasets: an extension to 1999Q4 of the original dataset
used in estimating the model, which originally ranged until 1998Q4; and a more recent one spanning until
2006Q4. The original dataset was needed to assess the AWM in an empirically relevant way, as the
dynamics in the model were fine-tuned to this dataset and residuals in the model were, accordingly, free
from auto-correlation. The most recent dataset is sufficiently different from the original one, including
backdates, to question whether residuals still have this property. As said, the problem with auto-correlated
residuals is that separating errors in deterministic trends and errors in the modelled dynamics (as needed in
comparing (2) and (1)) is more difficult. Mistaking changes in the dynamics in the data for changes in
deterministic trends, a natural consequence of the problem, would unfairly favour add-factor approaches

over the use of the model unaided.

The shift to the constants will be imposed using add-factors, i.e. by off-model residual adjustment, both in
order to assess their importance in the model forecasts and also in terms of looking for possible reasons why
add-factors could improve the outcome. Obviously, only simple residual-projection strategies will be
adopted. It should be stressed that the mechanical rules for "add-factoring" considered here are highly
stylized; the setting of add-factors, in practice, is usually based on information from off-model leading

indicators and expert judgment and may be applied differently in different equations.

Forecasts with the AWM involve the model as a whole, which means that forecasts for a large number of
series are generated. Only three variables will be shown, though: consumption deflator inflation, GDP
deflator inflation and GDP growth.® These three are a useful summary of model-based results, are relevant

for the analysis of the euro area as a whole and are known to be forecastable with simple benchmark model

% The paper will thus be about forecasting with large models, not about building them.

7 The steady state of the AWM is extensively discussed in Fagan et al. (2005), based on long-run simulations.

8 HICP has not been included due to the short sample available for the series in the data used, 1995 onwards. Linking HICP with
national CPIs for previous periods is not an option in practice, due to definitional changes and detected important shifts in seasonal
behavior between HICP and (aggregated) CPIs.
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alternative to the AWM. Furthermore, they offer specific challenges in a forecasting exercise. As shown in
Figure 1 (upper panel), GDP growth (in the form of first difference of log of real GDP) shows a low degree
of persistence and a noticeable degree of variability. The lower panel of Figure 1 shows GDP deflator
inflation and consumption deflator inflation, again in the form of first difference of log of each variable.
Two outstanding facts in the figure regarding these two series is their evident higher persistence, on the one
hand, and the likely presence of shifts in their underlying means, on the other. Furthermore, although both

variables broadly co-move, short but conspicuous separations take place here and there.

This is as far as a simple exposition of the exercise can go, but there are obviously a large number of details
that need be described for the reader to fully understand the whole exercise. These details can be presented
under five general headings: how the recursive forecasts are performed; how exogenous variables are dealt
with; how residuals are projected; how the model is re-estimated; and, finally, what are the alternative

benchmark models. The next five sub-sections deal with these points.

3.1 The forecasting steps

The steps taken for the out-of-sample exercise were the following. For each model, a forecast for quarter-
on-quarter change in the log of the variables was run starting in 1996Q1 with models (i.e., the AWM or the
benchmark models) estimated using data until 1995Q4. Forecasts were run for the following eight quarters
ahead and the corresponding forecast errors were collected. Thus, this forecast in particular generated one
instance of 1-step-ahead to 8-step-ahead forecast errors. The models were then re-estimated using the
sample until 1996Q1 and a new forecast starting in 1996Q2 was run for eight quarters, from which a new
instance of 1-step-ahead to 8-step-ahead forecast errors were collected. The exercise was repeated for each
quarter between 1996Q1 to 1999Q3, each time for 8 periods ahead or as many as the observations would
allow. After the exercises were run, errors were collected according to the number of periods ahead to which
they correspond. The final number of 1-step-ahead errors was thus 16, while the total number of 8-step-
ahead errors was 9. For each of the 8 generated series of forecast errors the average mean, the standard
deviation of the forecast error and the average RMSE were calculated and are reported in the tables

described below.

The steps taken for the in-sample exercises were similar, with the exception that the re-estimation step was
skipped: the AWM was used in its standard specification (broadly estimated until 1998Q4) and the
benchmark models were used as estimated with their full sample. Rolling forecasts were started in 1990Q1
and were performed, as before, until 1999Q4. Taking advantage of the higher number of forecasts done, the
longest forecast horizon was increased to 12 steps ahead, i.e. projections were run for 1- to 12-steps-ahead

forecasts, generating from 40 1-step-ahead forecasts to 29 12-step-ahead forecasts.

Last but not least, both in-sample and out-of-sample forecasts were repeated with the updated dataset. Only
the out-of-sample ones will be reported due to their higher relevance. The exercise was done for the
European monetary union (EMU) period (1999Q1-2006Q4), using models estimated until 1998Q4 but not

re-estimated, in order to avoid forecast loses due to variability in parameters. '

10 Tables for all exercises are included in an annex to the working paper version of this paper.
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3.2 Treatment of additional exogenous information

One important issue arising was how to treat exogenous variables. Key exogenous variables that could
affect the outcome comprise foreign variables (output, output prices and oil and commodity prices) and
fiscal variables. As a first approximation, these were simply taken as observed. Another set of series that are
typically endogenous but (following central-bank forecasting convention) whose equations were dropped
were the exchange rate and the interest rate. The two equations describing the law of motion for these two
variables were calibrated from well-known theoretical constructs, i.e. the UIP condition and a standard
Taylor rule, and tend not to be seen as appropriate for a forecasting exercise. Put simply, there is no
warranty that these rules are a reflection of relevant structural features in the data. These two variables were

thus also kept at their observed values.

It may be argued that the use of exogenous AWM variables as observed may be problematic. As a
robustness check, therefore a 7-variable VAR was estimated with the following series in levels: domestic
output, domestic prices, foreign output, foreign output prices, oil and commodity prices, domestic interest
rate, euro exchange rate. The VAR was estimated with and without a linear time trend, results for the former
case being reported because of their higher interest. An SVAR version (using a Cholesky decomposition
based on the causal ordering above) of the same was derived whose equations for foreign variables and the
interest and exchange rates were then added to the AWM. Forecasts with both the AWM and the AWM

supplemented with equations from the SVAR were run for all the exercises reported. '

3.3 Treatment of residuals

Among exogenous information needed by the model, one received a considerable amount of attention: the
residuals of the estimated equations. As already stated, one of the crucial aspects of the exercise is to
disentangle potential parameter instability from the presence of unaccounted-for structural breaks in
assessing forecast failure. As already said, Hendry and Clements (1999) claim that “deterministic shifts”
account for most systematic forecast failures, which they describe as un-forecastable breaks in equilibrium
means. These breaks lead to large and persistent errors in forecasting precisely because they last for a long
period, possibly forever. The fact that all the estimated equations in the AWM include a long-run
component in the form of an equilibrium-correction mechanism can be exploited at this point: an intercept
correction of these equations that is not subsequently reversed can be understood as reflecting a
deterministic shift of this kind. Thus, how residuals are treated in these experiments is a crucial part of the

exercise.

One way to assess the importance of this factor in the AWM is by testing different residual-projection
approaches and assessing their impact on forecast performance. In practice, what is done is projecting the
residual of each equation using information available at the time of the forecast and a number of simple
projection strategies. (Note that only stochastic equations in the model are shocked, identities are unaffected

by the procedure.)

! Changes in fiscal ratios over the period were ignored to simplify the analysis and because of degree-of-freedom considerations.
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In our exercises, we have considered up to seven residual projection strategies, of which four core residual
projection strategies were the preferred ones. These strategies appear plausible, mirror what forecasters tend
to do in practice, and have meaningful interpretations. For completeness, we offer here the definition of the
four although, in the interest of brevity, only results for two of the projection strategies will be fully

discussed in the text. We formalize them as follows:

1. Flat Projection Method: for each forecast, residuals (u;) were projected according to their mean

over a long period of time (1985Q1 to the period previous to the start of the forecast in the out-of-

sample exercise, same starting date to end of sample in the in-sample exercise):

This method was used in two different forms. In the out-of-sample exercise, the residual was
projected as its mean over the periods preceding the forecast. Thus, it was projected as a constant
that varied slightly for each forecast, according to its initial date. In practice, residuals were not very
different across forecasts, as model re-estimation did not lead to large variations in parameter
values. In the in-sample exercise, instead, the value was kept fixed across replications at full-sample

values, for the original dataset, or estimation-sample values for the new dataset.

2. Smoothed-Outlier Projection Method: for each forecast, residuals were projected at the average

value observed in the last four quarters before the start of the forecast:
1 3
Uy =—ZuH,k =1..,7T -t
43

The method tries to strike a balance between considering that all residuals are shifts in the
deterministic part of the forecast and acknowledging that true outliers might be present. The way to
do that is by taking a moving four-quarter average of past residuals and assuming that the resulting

average is the new terminal level for the variable.

3. Outlier Projection Method: for each forecast, residuals were at their last-observed value, i.e. the

period preceding the first forecast period:
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u,, =u,k=1.T-k

This method is similar to the previous one, except for the extreme assumption that last period's

equation residuals are always signalling the onset of a deterministic shift.

4. Smoothed-Trend Projection Method: for each forecast, residuals were projected according to

their last-observed trend, defined as the average change over the four periods preceding the forecast.
1 3
Augy = Z Z Au,_,;
i=0

This method is even more extreme than previous ones since the trend in the deterministic
component of each forecast is revised each time an exercise is run. In practice, this approach implies

that the analyst suspects a major specification failure in the model.

Note that the version of the AWM including SVAR equations was run with residual shifting also applied to

the latter equations.

Finally, note that a few other residual projection strategies were pursued in our exercises. For completeness,

and for the interest of some readers, these are described and motivated in Annex 1.

3.4 Re-estimation procedure

In re-estimating the model it was important to use as little information as possible belonging to the period to
be forecast. This was achieved by, among other things, restricting the number of parameters originally
calibrated, as the calibration could be seen as reflecting prior information based on the knowledge of the full
sample. Among parameters that were nevertheless taken at their original calibrated value, the capital-share
parameter was the most important. Other calibrated parameters taken unchanged were those in the wage and
price equations on price expectations and the ECM term in the wage equation. In addition, the NAIRU
embodied in the model was left unchanged at its full-sample value. It is highly unlikely that those calibrated
terms will significantly affect the outcome of the exercise, due to their limited variability over our short

forecast horizon.

The equations were simplified by dropping dummy variables effective in or after 1995Q4, the first period
estimated.'” Another simplification was the harmonization of the end-of-sample for all the equations.

Although original equations were estimated with varying ending points, depending on data availability at

12 An alternative is to alter the specification of the equations to re-introduce dummy variables after the period in which they become
effective. The decision to keep equations unchanged over recursive re-estimations was taken to simplify the exercise. This means that
outliers in the period are more disruptive than otherwise, thus possibly again biasing results against the AWM.
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the time of the original estimation, in the present recursive exercises all equations were estimated until a
common ending point, the last possible period before starting each forecast. Notwithstanding all these
points, the equations were largely similar to those reported in Fagan et al. (2005), and relatively stable over

the 4-year period used (see Annex 3).

The version of the AWM using SVAR equations applied the re-estimation procedure also to these

equations.

For the in-sample exercises, the model was used as taken.

3.5 Alternative benchmark models

The AWM was tested against simpler alternative models: an AR(2) model of each variable, and an ARX(2)
augmented with exogenous information (foreign GDP and prices, exchange rate and interest rate) taken at
their observed values. Both benchmark models were for the first difference of the log of the variable to
forecast, and included a constant and two lags of the endogenous variable. The second also included the
short-term interest rate (in levels) and the first difference of the exchange rate, foreign GDP, GDP deflator
and oil and commodity prices. These variables entered contemporaneously and lagged once and twice
respectively. The ARX(2) models were used to assess the effect of taking foreign variables as given in the

data, the way this is done with the AWM when no SVAR equations are added to the model.

Furthermore, the 7-variable VAR used to derive the SVAR equations for foreign variables described above

was also used as a benchmark model.

4. Results

For clarity, results will be presented first for the simulated out-of-sample exercise, then for the in-sample
exercise and finally for the revised dataset. The first two steps will be used to assess the importance of add-
factoring using the dataset on which the AWM was estimated. The third step more thoroughly analyses out-
of-sample behaviour of all the models by running forecasts over the EMU period using models estimated
with data previous to EMU. Results under each heading will be presented for consumption deflator inflation

in the first instance and then for the other reported variables.

An important caveat is that no formal test of forecast comparison will be made in the text. This reflects the
nature of the exercise: as is well known, out-of-sample tests for forecast comparison when models are
nested have non-standard distributions. The procedure to test against the proper test sizes is to bootstrap the
forecasts. Since the AWM can be deemed to nest all the alternative models contemplated, since there is an
interest in analyzing multi-step forecasts, and since bootstrapping the AWM for the large number of tests

considered is certainly computationally prohibitive, we follow a relatively more narrative approach.
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4.1 Simulated out-of-sample exercise

4.1.1 Forecasts of consumption deflator inflation

Table 1 shows the basic forecast statistics for the out-of-sample exercise for the consumption deflator
quarter-on-quarter inflation. The table shows the mean error, the standard deviation (S.D.) of the forecast
error, the RMSE and Theil's U statistic (together with its standard deviation) for exercises covering from 1-
to 8-step ahead forecasts, run for the period 1996Q1 to 1999Q4. The mean error, the S.D. and the RMSE are
reported as 400 times their estimated values, to ease their reading. Models for which results are reported are
the AR(2) model, the ARX(2) model and the AWM.

[INSERT TABLE 1]

Results for the AWM are shown for the announced residual-projection strategies: no residual projection, and
residuals as smooth level shifts. Theil's U statistic is the ratio between the corresponding RMSE and the
RMSE resulting from a naive forecast in which inflation is projected unchanged since it was last observed.
Thus, a U statistic of less than one indicates that forecasts from the model under test is to be preferred to the
naive forecast. The standard deviation attached to each U statistic is the non-parametric estimate of the ratio

of the two RMSE involved in its calculation.
A number of facts can be noticed:

— None of the models clearly beats the no-change forecast at short horizons (4=1), after which all models

worsen substantially.

— In terms of Theil's U statistic, the smoothed-outlier projection is clearly to be preferred to the other

models as £ increases.

— In terms of mean error (bias), the smoothed-outlier projection strategy is by far the better.

4.1.2 Forecasts for the other variables

It is worth pointing out to what extent these results apply to the other two variables analyzed, GDP deflator
inflation and GDP growth. GDP deflator inflation is forecast with similar accuracy across models at short
horizons, but not at long horizons, in which the smooth-outlier projection strategy offers the best results.
Regarding forecast biases, the good performance of the AWM with smooth level shifts found with the
consumption deflator inflation is also present in this case. The worst GDP growth forecasts at short and
medium horizons, in terms of RMSE, are from the AWM. For longer horizons, the AR(2) is the best one
and the ARX(2) the worst one, with the AWM closer to the former than to the latter. Contrary to what

happens to inflation, the bias is not clearly affected by the use of add-factors: it actually increases slightly.

In summary, one could argue that the AWM, although no worse than standard forecasting benchmark
models, needs some help from exogenous level shifts, at least for inflation. The implications of this are that
the model is not properly capturing stable long-run relationships. As will be shown, though, a deeper
analysis of the RMSE leads to a partial reassessment of this conclusion. We will proceed to decompose the
reported RMSE in order to show that although level shifts are important to counter model biases, their

overall impact on forecast accuracy could be negative. Although deterministic shifts help reducing first-
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moment discrepancies between model and the data-generation process (and this seems to be a robust
finding), this happens at a cost in terms of second-order moments than at times more than balances their

potential benefit.

Table 2 shows the RMSE decomposition of the forecasts for the four models analyzed in Table 1. In the
table, the decomposition in (12) is shown relative to the variance of the variable, in order to enhance the

readability of the table."
[INSERT TABLE 2]

One striking feature in the table is the huge disparity in biases (squared) between the AWM with smooth-
outlier projection and the rest, at least for large 4. This is the main mechanism explaining the good
behaviour of this use of the model for long-horizon forecasts. (The ARX(2) model is clearly worse on this
account, though, which explains its very bad behaviour at medium to long horizons.) Finally, the relatively
good performance of the AR(2) at short horizons is coming mostly from its low forecast variance. This is in
contrast with the relatively low correlation between forecast and actual for this model. The low forecast
variance means that AR(2)-based forecasts converge to a point faster than the other models, a feature which
is not desirable per se. In a word, level shifts are adding to the AWM's forecast variance but this is balanced
by a reduction in the forecast bias. Thus, level shifts seem to have a positive impact to the extent that they

get rid of bias faster than they add to forecast variability. '*

Unfortunately, no firm conclusions can be drawn from the exercise due to the small number of forecasts run,
as is made clear by the large standard deviations of the U statistics. Furthermore, forecast variance depends
to an unknown extent on parameter re-estimation, with more complex models bound to lose more on this
account due to higher number of parameters. In a word, results in Table 2 may bias the picture against the
AWM (or indeed any structural macro-model) simply because of its higher complexity. It is thus necessary

to reassess results in the light of constant-parameter models.

4.2 In-sample exercise

4.2.1 Forecasts of consumption deflator inflation

As a first steps, results spanning 1996Q1 to 1999Q4 were assessed using the full-sample version of the
models and lent weight to the view that model re-estimation adds significantly to the variance of the forecast
without affecting much the bias. Hence, model re-estimation has in general a small beneficial impact on
forecast bias, but adds to forecast variability to an extent that often more than balances this factor. The
question is thus whether re-estimation is strictly necessary to test the model: according to Inoue and Kilian
(2005) this is not so, as all relevant inference can be obtained in-sample. Based on the strength of their
views and the evidence gathered so far in our analysis, it was decided to repeat the forecasts using the AWM

in its final form, i.e. with parameters estimated using the full sample.

5 In other words, the raw numbers — which were very small — have been re-scaled by the variance of the observations used to
calculate the corresponding RMSE. Please note that the column with the relative covariance, label 'cov(x,f)/var(x)', differs by
construction from the correlation between actual and forecast. In order to ease interpretation of the table, a memo column with the
correlation between the two has been included in each entry.

!4 Note also that smooth-outlier bias is the only consistently insignificant.
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Table 3 presents results for a repetition of the exercise described in Table 1, but skipping the re-estimation
step for all the models and with an extended period over which the exercise is run, i.e. 1990Q1 to 1999Q4.
Table 4 presents the corresponding RMSE decomposition.

[INSERT TABLES 3 AND 4]

Results in Table 3 have been drawn from simulated in-sample forecasts (i.e., dynamic simulations) spanning
the mentioned period, which means that as much as 40 forecasts were available. This has the merit of
significantly reducing the variability seen in the numbers in tables 1 and 2 and considerably clarify the
picture. Taking advantage of that, forecast horizon has been increased to allow for forecasts up to 12 periods
ahead.

One of the main conclusions from tables 3 and 4 is that the AWM with no residual projection is now clearly
better than projecting with the smooth level shift projection. As can be seen in Table 4, this stems basically
from a lower variance of the forecast in the former case. Thus, although it is still the case that shifting the
levels of the residuals leads to lower forecast bias, this is more than offset by forecast variability induced by
shifting the levels. (In both cases the correlation between actual and forecasts is similar.) Comparing to the
benchmark models, Table 3 shows that the ARX(2) model now performs better, but with the caveat that this
seems to come mostly from much lower bias, implying that this model is seriously impaired by parameter
re-estimation. The AR(2) model performs relatively worse than previously, at least in comparison with the

no-residual projection, in particular due to higher bias.

4.2.2 Forecasts for the other variables
Finally, tables 5 and 6 present results for the other two variables of interest: GDP deflator inflation and GDP
growth. Note that the mean error, the S.D. and the RMSE for GDP growth are multiplied by 100 (instead of

400, as for the inflation series).
[INSERT TABLE 5]

Table 5 for GDP deflator inflation clearly indicates that the AWM with no residual-projection strategy fares
better than when residuals are projected with smooth level shifts, in particular at long horizons. Note,
however, that biases are everywhere relatively large, sometimes as high as in the out-of-sample exercise.
Compared to benchmark models, the AWM (with no residual projection) is consistently worse in short-term

forecasts, but beats the AR(2) model and comes close to the ARX(2) for long-term forecasts.

Finally, Table 6 shows results for GDP growth. As was the case in the out-of-sample exercise, bias
reduction from add-factoring is not clearly present. Otherwise, all models behave in a similar way, in special

as regards long-term forecasts.
[INSERT TABLE 6]

In general, it is the case that the AWM without residual projection fares better than the smooth-level-shift

approach, contrary to the out-of-sample findings.

Results using the VAR (with trend) beat the other models, including the AWM, in terms of RMSE for all

the reported variables. Furthermore, biases were in all cases, except for GDP growth, smaller. Charts 2, 3
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and 4 present the biases for the three variables and all the forecasts run using the original dataset. It may be
noticed that the AWM with smooth-outlier projection is still the best, in terms of bias, for GDP growth. It
also closely tracks the VAR for short-horizon forecasts (2 from 1 to 5 quarters ahead) for consumption
deflator inflation. For GDP deflator inflation, on the other hand, the VAR clearly beats all other models. It
must be concluded that the VAR (the only model including an explicit trend) is clearly outstanding in terms

of forecast bias for inflation. It is clearly the model to beat.

4.3 Forecasting in EMU

The last exercise involves the use of the most recent dataset spanning 1970Q1 to 2006Q4. As explained in
section 3, the new data are very significantly changed from the older dataset over their entire span. In
particular, the short-term dynamics of the series may have been affected, which in theory could bias results
in favour of add-factoring. To assess the effects of add-factoring more thoroughly, the procedure has been
applied in this section to all the models. Nevertheless, the previous in-sample results, which saw a positive
impact on forecast bias but a negative impact on overall accuracy from residual projection, should be borne

in mind when comparing results.

Forecasts will now focus on the EMU period, 1999Q1 to 2006Q4, for empirical- and policy-relevance
reasons. The most revealing exercise involved EMU forecasts from models estimated until 1998Q4 which
were not recursively re-estimated for the forecasts. Thus, the exercise was done out of sample but the RMSE
of the forecasts was not affected by model re-estimation. Exercises were also run with recursive model re-
estimation and full sample estimates (i.c., estimates going until 2006Q4) but will not be reported due to their

. 15
lower interest.

4.3.1 Forecasts for inflation

As far as results in this section are concerned, distinguishing between consumption deflator inflation and
GDP deflator inflation is unnecessary. Both will be discussed under the same heading. The main findings
are, in the first place, the worse performance of all models compared with the previous out-of-sample
exercise; in the second place, the pervasiveness of bias reduction when add-factors are used; in the third

place, the change in the ranking of models. All the results discussed below can be found on table 7.
[INSERT TABLE 7]

The first point is in all likelihood a reflection of the change in the behaviour of trend inflation across
samples, discussed below, since models estimated in the first part of the sample are not suited to forecasts
the second part. The second point comes from the fact that bias 8 steps ahead has been reduced in each
single case. Furthermore, biases have often gone from being higher than forecast error variance to being
much lower. Although, as said, the new dataset could bias results in favour of add-factors for the AWM , the
point should not hold for the other models, whose dynamics are well adapted to the new dataset. The third

point comes from the fact that the best model in the previous sections, the VAR model, is now among the

15 Results for recursive re-estimation of models and full-sample estimation of models are included in an annex to the working paper
version of the text.
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worst ones. Only subjecting the VAR to add-factor correction brings it back to the fore in terms of forecast

performance.

The reading of the results should be relatively straightforward: for inflation, the evolution of the
deterministic component of the underlying behaviour of the series matters (probably) more than the type of
model used to produce the forecasts. Models that do not include explicit roles for trend changes, such as the
AWM or the AR(2) model, tend to give consistent but lacklustre results over different samples, except if
their residuals are suitably projected. Models that include explicit trends, such as the VAR, show extreme
performance across samples, from exceptionally good to exceptionally bad, unless again their residuals are
projected. Furthermore, the VAR is the only model consistently under-predicting inflation, as the other
models mostly over-predict it. This would be the case if an underlying negative trend over the estimation

period is gone in the forecast period.

It is unavoidable to conclude that the underlying deterministic or trended behaviour of inflation has
significantly changed before and after EMU. Although monetary policy is the main suspect in both parts of
the sample as to what caused this, proving this point is beyond the scope of this paper. Suffice to say that
there is strong evidence that most estimated models used to forecast inflation are badly adapted for the EMU
period. Instead, inflation forecasts should be performed with either models in which the deterministic
component is modelled in sophisticated ways, or with models robust to changes in trends, independently of

how good or bad they fit the data over the estimation period.'

4.3.2 Forecasts for growth

As with inflation, add-factors reduce bias 8 steps ahead in all cases, sometimes dramatically. Contrary to
inflation, though, the ranking of models in terms of their long-term ability to forecast is not seriously
perturbed. The only general point of relevance is the negative bias in long-horizon forecasts across models,
which would point to a slight decrease in trend GDP growth over the two samples. But certainly the

previous strong evidence of a change in trend does not seem to be present.

4.4 Further exercises on inflation trends

Is the conclusion that inflation saw a change in trend over the sample borne out by further evidence? One
way to briefly check for this is to assess the extent to which models robust to changes in trend behave.'’
Since this is best done with simple models, variations over the AR models used in the paper were used to
assess the effects of including or excluding stochastic or deterministic trends in this basic simple model. In
particular, the basic AR(2) model was changed and re-estimated, always until 1998Q4, and used to produce
forecasts of consumption deflator inflation for the period 1999Q1 to 2006Q4 with the following alternative

specifications:

2" difference of the consumption deflator (in logs), with two types of deterministic components: none,

and a constant;

' The obvious alternative is to wait sufficiently long to have long time series covering the EMU period.
'7 The alternative, of checking models with sophisticated modeling of trend behavior, is beyond the scope of the paper.
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1 difference of the same variable (i.e., its inflation rate), with three types of deterministic components:

none, a constant, and a constant and a trend.'®

Lags in the equations were selected using classical LR tests, resulting in 1 lag for the 2"*-difference models
and 2 lags for the 1*-difference ones. A summary of the models, including their roots, can be found in table
8. All the estimations are consistent in that at least one unit root is present (as one root is always either
imposed at 1 or close to 1), one further large root is present (close to one when estimated unless a trend is
included) and a smaller root is present (at around -0.3). The equations were used to produce forecasts of
inflation (quarter-on-quarter, as in the rest of the paper), by suitable accumulation of the raw forecasts in the

case of the 2"-difference equations.
[INSERT TABLE 8]

Note that the 1¥-difference equation with constant and trend and the 2™-difference equation with constant
should import the trend into the forecast period, leading to undershoots (positive bias), and that the 1°-
difference equation with constant should import the sample mean of inflation into the forecast period,
leading to overshoots (negative bias). The 2"-difference equation with no deterministic component does not
have a terminal condition for the inflation rate and is our principal candidate for robust forecast model. Last
but not least, the 1¥-difference model with no deterministic component implies a terminal null inflation rate
and is thus inconsistent with any meaningful DGP of the data, but is included because its quasi-unit root,
probably spurious, turns this equation into basically a replicate of the previous one. Results are reported in
table 9.

[INSERT TABLE 9]

From table 9, it is clear that most of the prior views above have been validated. Furthermore, the two models
identified as more robust to changes in trend turn out to be the best ones: the 2"~ and 1%-difference models
with no deterministic component. The 1¥-difference model with constant comes a close second, while the
1*-difference model with constant and trend is clearly the worst one, with the large terminal bias (at three
times the standard deviation of the forecast error) explaining most of the outcome. Note that this last model

is the preferred one in sample.

5. Conclusions

We examined the performance of different residual projection strategies on forecast performance, using a
large macro model of the euro area and smaller time-series-based models. The macro model, the AWM, is
actively used for forecasting and policy simulation purposes. In our exercises, we attempted to outline a
careful and comprehensive methodology; in effect, laying out a road map for how other macro-model users

may evaluate residual projection strategies in their own environment.

Aspects of forecast failure identified in the academic literature (but typically employed with “small”

systems) were applied. A number of tests were carried out trying to assess the relative predictive

'8 Note that including a trend in the 2™-difference model was unnecessary, as the 2™ difference of the consumption deflator is
stationary even without a trend. Equations in levels were also tested, but are irrelevant for the point raised.

ECB

Working Paper Series No 950
October 2008




performance of the model, taking as benchmarks both simple time-series models and versions of the model

where residuals were projected according to plausible laws of motion. The former are widely found in the

forecasting literature and have proved useful in defining a well-known, robust benchmark. The residual

projection strategies were used with a focus on analyzing the effects of the steady state in the model in terms

of forecasting performance. They were applied to the AWM and, in a forecasting exercise covering the

EMU period, also to the benchmark models.

The outcome of the exercise has been interesting in that:

i)

iii)

In the tests, simple models will tend to beat complex models for reasons unrelated to their

goodness of fit.

It has been clearly shown that some of the benchmark models used beat alternatives (including the
AWM) thanks to their low forecast variability, itself a consequence of the fast return to the steady-
state in these models. On the other hand, these models many times showed large forecast biases and
low correlation with actual observations. This was in particular the case for the AR(2) model. Going
beyond this point, there is no evidence that size or complexity adds or detracts from the forecasting

ability of the models.
In the tests, simple residual projection approaches are to be preferred to more complex ones.

The exercises, in results that were reported or just mentioned, prove that there is a trade-off in terms
of residual projection strategies that reduce the bias and those that reduce the variability of the
forecasts. Since both affect the final forecast RMSE, the choice of projection strategies depends

very much on the specific goals pursued by the forecaster.
Residual-projection strategies decrease bias as a rule but tend to increase forecast variance

The finding that residual-projection strategy reduced bias is pervasive enough to rule out luck:
deterministic breaks seem to be an important factor in economic time series. Unfortunately, the
variability introduced in the forecasts by shifting residuals outweighs this effect and results often in

large forecast RMSE. In practice, the technique must be handled with care.

The pronounced effect in inflation forecasts may indicate that inflation over the estimation

sample was trended.

Inflation seems to be particularly affected by residual shifts. First, because residual shifts help
forecasting it over the first part of the period (1990 to 1999), unless an explicit trend is used.
Second, because forecasts outside this period and in EMU are harmed by the presence of an explicit
trend—although residual shift is still useful. This probably means that there was a change in the
underlying DGP of inflation over the sample, which in turn implies that models estimated over the
first part of the sample are unsuitable to forecast in the second part. Residual shifting and over-

differencing help in overcoming this problem.

Although, we have attempted a comprehensive evaluation of model-based judgment, an active research

agenda doubtless still lies ahead. One result in particular that would need a deeper analysis would be
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whether outcomes can be further improved if equation-specific residual projection strategies are adopted
and whether past forecast failures should be taken into consideration. Modellers tend to have good
knowledge of which equations in their models track well and a good idea of how, for example, the effect of

omitted variables impact their modelling framework.

But all in all we consider the evidence gathered in the paper that inflation in the euro area changed its trend
behaviour very significantly as robustly established, more so than for GDP. This makes inflation forecasting

in the EMU period a particularly challenging task.
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Table 7. Simulated Out-Of-Sample Projections, New Data

Consumption Deflator inflation

AWM, no residual projection AWM, projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.,] N. Obs
1 -0.1960 0.7696 0.7940 0.79 0.13 32 1 -0.0556 0.8648 0.8668 0.86 0.15 32

2 -0.5876 0.8536 1.0364 1.08 0.15 31 2 -0.0796 1.0376 1.0404 1.08 0.14 31

3 -0.9832 0.8288 1.2860 1.30 0.16 30 3 -0.1404 1.1488 1.1572 1.17 0.15 30

4 -1.1696 0.7984 1.4160 1.14 0.19 29 4 -0.1424 1.1832 1.1920 0.96 0.12 29

5 -1.3300 0.7856 1.5448 1.33 0.26 28 5 -0.1376 1.2248 1.2328 1.06 0.22 28
6 -1.5664 0.7540 1.7384 1.46 0.34 27 6 -0.1896 1.2644 1.2784 1.07 0.21 27

7 -1.7480 0.6876 1.8784 1.60 0.47 26 7 -0.2460 1.0228 1.0520 0.90 0.23 26

8 -1.9360 0.7352 2.0712 1.83 0.38 25 8 -0.3564 1.1688 1.2220 1.08 0.20 25

AWM + SVAR, no residual projection AWM + SVAR, projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.1600 1.0524 1.0644| 1.06 0.17 32 1 -0.0076 1.1836 1.1836 1.18 0.19 32

2 -0.5480 1.0808 1.2116 1.26 0.20 31 2 -0.0016 1.3076 1.3076 1.36 0.19 31

3 -0.9996 1.0636 1.4596 1.47 0.27 30 3 -0.1300 1.1428 1.1500 1.16 0.20 30

4 -1.2052 1.1968 1.6984 1.37 0.34 29 4 -0.2284 1.2408 1.2616 1.02 0.16 29

5 -1.3564 1.2772 1.8632 1.60 0.46 28 5 -0.2936 1.4244 1.4544 1.25 0.33 28
6 -1.6364 1.2248 2.0440 1.71 0.54 27| 6 -0.4456 1.3376 1.4096 1.18 0.34 27

7 -1.8920 1.1724 2.2260 1.90 0.64 26 7 -0.6348 1.2352 1.3888 1.18 0.30 26

8 -2.1380 1.0264 2.3716 2.10 0.50 25 8 -0.8608 1.3668 1.6152 1.43 0.28 25

AR(2) AR(2), projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.,] N. Obs
1 -0.0932 0.8624 0.8672 0.86 0.05 32 1 -0.0252 0.9960 0.9960 0.99 0.06 32

2 -0.1052 0.8448 0.8512 0.89 0.04 31 2 -0.0092 1.1128 1.1128 1.16 0.06 31

3 -0.1668 0.9092 0.9244 0.93 0.07 30 3 -0.0284 1.3700 1.3704 1.38 0.11 30

4 -0.2120 1.0612 1.0820 0.87 0.06 29 4 -0.0140 1.7228 1.7228 1.39 0.13 29

5 -0.2660 1.0084 1.0428 0.90 0.07 28 5 0.0032 1.8912 1.8912 1.63 0.17 28
6 -0.3576 0.9940 1.0564 0.89 0.08 27 6 -0.0232 2.0932 2.0932 1.76 0.23 27

7 -0.4204 0.9796 1.0660 0.91 0.12 26 7 -0.0720 2.3100 2.3112 1.97 0.29 26

8 -0.5608 0.8996 1.0600 0.94 0.09 25 8 -0.2188 2.5600 2.5692 2.27 0.20 25

ARX(2) with exogenous variables ARX(2), projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.0224 0.7208 0.7208 0.72 0.13 32 1 -0.0736 0.7732 0.7768 0.77 0.12 32

2 0.0140 0.7384 0.7384 0.77 0.12 31 2 -0.0768 0.7368 0.7408 0.77 0.09 31

3 0.0444 0.9304 0.9312 0.94 0.15 30 3 -0.1024 1.0744 1.0792 1.09 0.14 30

4 0.1028 0.9660 0.9716 0.78 0.15 29 4 -0.0760 1.1188 1.1216 0.91 0.15 29

5 0.1716 1.0020 1.0168 0.87 0.17 28 5 -0.0428 1.2580 1.2588 1.08 0.24 28
6 0.2208 1.0912 1.1136| 0.93 0.22 27| 6 -0.0280 1.5104 1.5108 1.27 0.27 27

7 0.3104 1.0544 1.0992 0.94 0.30 26 7 -0.0096 1.5316 1.5316 1.31 0.33 26

8 0.3568 1.1100 1.1660 1.03 0.16 25 8 -0.0400 1.8224 1.8228 1.61 0.19 25

VAR(2) VAR(2), projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.,] N. Obs
1 -0.2436 1.0012 1.0304 1.03 0.15 32 1 -0.1332 1.0028 1.0116 1.01 0.13 32

2 1.0948 0.8500 1.3860 1.44 0.19 31 2 -0.0132 1.0436 1.0436 1.09 0.13 31

3 2.1588 0.8264 2.3116 2.33 0.30 30 3 0.1232 1.1056 1.1124 1.12 0.16 30

4 2.8720 0.9372 3.0212 2.44 0.48 29 4 0.3020 1.2208 1.2576 1.02 0.14 29

5 3.3024 1.0544 3.4664 2.98 0.66 28 5 0.4644 1.3832 1.4592 1.26 0.22 28
6 3.4920 1.1940 3.6904 3.10 0.85 27 6 0.5940 1.2896 1.4196 1.19 0.23 27

7 3.5696 1.2604 3.7856 3.23 1.03 26 7 0.7452 1.4000 1.5860 1.35 0.30 26

8 3.4788 1.3580 3.7344 3.30 0.78 25 8 0.8532 1.4928 1.7196 1.52 0.25 25

Statistics based on 1- to 8-step-ahead forecasts of 1st difference of log of variable muiltiplied by 400, from 1999Q1 to 2006Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window

with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM, no residual projection: AWM used with flat residual projection
AWM, projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.

AWM + SVAR refers to the: AWM supplemented with equations for exogenous variables from an SVAR decomposition of the previous VAR

Table 8. Description of AR Alternative Models for Inflation
Model: (1-a L) (1-pL)AlogP,=cy+c¢; t+n,

o B Co ¢y
Random Walk 0 1 0 0
2" Diff: -0.32 1 0 0
2" Diff. with Constant -0.33 1 0.07 0
1" Diff. -0.32 0.99 0 0
1" Diff. with Constant -0.31 0.97 0.19 0
1*" Diff. with Constant & Trend -0.30 0.88 1.88 -0.016
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ANNEX 1: COMPLETE SET OF RESIDUAL PROJECTION STRATEGIES

1.

Core treatment

Not all residual-projection strategies could be discussed to simplify the exposition. For the out-of-sample

exercise, four simple extrapolation strategies were initially adopted:

1.

Flat Projection Method: for each forecast, residuals (#,) were projected according to their mean

over a long period of time (1985Q1 to the period previous to the start of the forecast in the out-of-

sample exercise, same starting date to 1999Q4 in the in-sample exercise):

=u="—k=1.,T-t
t

This method was used in two different forms. In the out-of-sample exercise, the residual was
projected as its mean over the periods preceding the forecast. Thus, it was projected as a constant
that varied slightly for each forecast, according to its initial date. In practice, residuals were not very
different across forecasts, as model re-estimation did not lead to large variations in parameter

values. In the in-sample exercise, instead, the value was kept fixed across replications.

Smoothed-Outlier Projection Method: for each forecast, residuals were projected at the average

value observed in the last four quarters before the start of the forecast:

3
Upp ziz“ut_i,k:l,...,T—t.

i=0

The method tries to strike a balance between considering that all residuals are shifts in the
deterministic part of the forecast and acknowledging that true outliers might be present. The way to
do that is by taking a moving four-quarter average of past residuals and assuming that the resulting

average is the new terminal level for the variable.

Outlier Projection Method: for each forecast, residuals were at their last-observed value, i.e. the

period preceding the first forecast period:

u,, =u,k=1.,T-k

This method is similar to the previous one, except for the extreme assumption that last period's

equation residuals are always signalling the onset of a deterministic shift.

Smoothed-Trend Projection Method: for each forecast, residuals were projected according to

their last-observed trend, defined as the average change over the four periods preceding the forecast.

1 3
Aut+k = Z z Aut—i
i=0
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This method is even more extreme than previous ones since the trend in the deterministic
component of each forecast is revised each time an exercise is run. In practice, this approach implies

that the analyst suspects a major specification failure in the model.

Only methods 1 and 2 were found to be worth reporting, as the other led to extreme cases of forecast failures

due to occasional excessive shifts in the residuals.'’ Results for methods 3 and 4 are available upon request.

2. Alternative projection strategies not reported

Section 4.3 laid out the core residual projection strategies followed in this paper. However, for the sake of
completeness and for additional interest, three other projection strategies were tested in the in-sample
exercise. They were selected (loosely) based on the form of the equations in the AWM, most of which are in

the form described in (10). Dropping the dynamic part in that equation yields,
Ay, = _IB(yt—l _7'21—1)"'”1 .

In this expression last period's residual u#, could be a true one-off outlier to be corrected afterwards or it
could be signalling that a true permanent shift has taken place. The alternative residual-projection strategies

meant to capture that are summarized in the table below.

Type of Qutlier Residual Projection Impact on y, Impact on Ay,
Corrected Level Shift o, Puo, fuo, Pu,. .. U, U, U, .. u, 0,0, ...
Corrected Outlier ug, -(1-Puy, 0, 0, ... 1y, 0,0,0, ... uo, -1, 0,0, ...
Compensation of Outlier | ug, (5-2)uo, (1-5)Suo, 0,... Uo, -1, 0,0, ... Uo, -2uo, Uo, 0, ...

These projection strategies led to results that were not significantly better than those reported in the text. As

before, results are not included but can be provided upon request

1 For the 3rd and 4th methods, which gave the highest variability of residuals, a small smoothing mechanism had to be put in place in

ECB

order to avoid large deviations in the forecasts. It was found that in some cases exceptionally large residuals led to implausibly large
forecast errors, or outright simulation debacles. In order to ease this, residuals going above 5 times their historical — at the time of the
forecast — variance were reset to their past mean. Even so, results were sometimes implausible.
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ANNEX 2: FURTHER TABLES

The annex includes tables that could not be included in the main text to save space.

The sets of tables are the following:

Tables A.1 and A.2

The first set of tables are for GDP deflator inflation and GDP growth for the out-of-sample exercise
with the original dataset, covering the period 19996Q1 to 1999Q4.

Tables A.3, A4 and A.5

The tables include results for the same exercise as previously, the out-of-sample one with the original
dataset, covering 1996Q1 to 1999Q4, using the VAR and the AWM augmented by SVAR equations.

Tables A.6, A.7 and A.8

The in-sample exercise from 1990Q1 to 1999Q4 using the VAR and the AWM augmented with SVAR

equations, for the three variables.
Tables A.9, A.10 and A.11

The third set of tables are for the out-of-sample exercise with model-re-estimation for the three selected
variables, covering the period 1999Q1 to 2006Q4.

Tables A.12 and A.13

The last set of tables show the results for GDP deflator inflation and GDP growth for the out-of-sample
exercise without mode re-estimation, of which the consumption deflator results were already included in

the text.

The exercise included in tables A.9 to A.11 was performed using the new dataset over the period 1999Q1 to

2006Q4 but re-estimating the model at each step. Results were in general significantly better than when

models were not re-estimated, lending weight to the view that model re-estimation helps in countering

breaks in the data. Furthermore, it was found that residual projection when models were not re-estimated (as

seen in tables 7 in the main text and A.12 and A.13 in this annex) was enough to bring the forecast

performance of many models close to their performance when re-estimated.
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Table A9. Simulated Out-Of-Sample Projections with Recursive Re-estimation,
New Data, 1999Q1 to 2006Q4

Consumption Deflator inflation

AWM, no residual projection AWM, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.3064 0.7792 0.8372 0.83 0.14 32 1 -0.0576 0.8520 0.8540 0.85 0.14 32
2 -0.5528 0.8436 1.0084 1.05 0.15 31 2 -0.0692 0.9732 0.9756 1.01 0.13 31
3 -0.8024 0.8272 1.1520 1.16 0.14 30 3 -0.1140 1.0868 1.0928 1.10 0.13 30
4 -0.8888 0.7556 1.1664 0.94 0.12 29 4 -0.1044 1.0724 1.0772 0.87 0.11 29
5 -1.0656 0.7340 1.2940 1.11 0.17 28 5 -0.1044 1.1144 1.1192 0.96 0.19 28
6 -1.2536 0.6844 1.4280 1.20 0.20 27 6 -0.1528 1.0936 1.1044 0.93 0.19 27
7 -1.3888 0.5636 1.4988 1.28 0.29 26 7 -0.2016 0.8932 0.9156 0.78 0.19 26
8 -1.5408 0.6240 1.6624 1.47 0.19 25 8 -0.3132 0.9976 1.0456 0.92 0.14 25
AWM + SVAR, no residual projection AWM + SVAR, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.]| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.1660 1.0536 1.0664 1.06 0.15 32 1 0.0104 1.1696 1.1700 1.16 0.17 32
2 -0.3704 1.1196 1.1792 1.23 0.19 31 2 0.0212 1.2180 1.2184 1.27 0.17 31
3 -0.7564 1.2884 1.4940 1.50 0.25 30 3 -0.1168 1.1196 1.1256 1.13 0.17 30
4 -1.0088 1.5020 1.8092 1.46 0.31 29 4 -0.2380 1.2400 1.2624 1.02 0.14 29
5 -1.2756 1.6840 2.1128 1.82 0.47 28 5 -0.3268 1.4972 1.5328 1.32 0.29 28
6 -1.5388 1.5808 2.2060 1.85 0.57 27 6 -0.4772 1.3360 1.4188 1.19 0.31 27
7 -1.7588 1.5456 2.3416 2.00 0.66 26 7 -0.6580 1.3364 1.4896 1.27 0.28 26
8 -1.9828 1.3484 2.3976 2.12 0.55 25 8 -0.8872 1.3668 1.6296 1.44 0.26 25
AR(2) AR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.1048 0.8660 0.8724 0.87 0.05 32 1 -0.0252 0.9924 0.9928 0.99 0.06 32
2 -0.1216 0.8512 0.8600 0.89 0.04 31 2 -0.0072 1.1068 1.1068 1.15 0.06 31
3 -0.1916 0.9224 0.9420 0.95 0.07 30 3 -0.0244 1.3600 1.3600 1.37 0.11 30
4 -0.2444 1.0868 1.1140 0.90 0.07 29 4 -0.0080 1.7060 1.7064 1.38 0.12 29
5 -0.3064 1.0348 1.0792 0.93 0.08 28 5 0.0120 1.8692 1.8692 1.61 0.16 28
6 -0.4056 1.0372 1.1136 0.93 0.09 27 6 -0.0132 2.0620 2.0624 1.73 0.22 27
7 -0.4776 1.0284 1.1340 0.97 0.14 26 7 -0.0596 2.2756 2.2764 1.94 0.28 26
8 -0.6296 0.9492 1.1392 1.01 0.10 25 8 -0.2028 2.5132 2.5212 2.23 0.19 25
ARX(2) with exogenous variables ARX(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.0316 0.7272 0.7280 0.72 0.13 32 1 -0.0692 0.7624 0.7656 0.76 0.11 32
2 -0.0004 0.7556 0.7556 0.79 0.12 31 2 -0.0720 0.7336 0.7372 0.77 0.09 31
3 0.0292 0.9796 0.9800 0.99 0.16 30 3 -0.0908 1.0640 1.0676 1.08 0.14 30
4 0.0900 1.0368 1.0408 0.84 0.16 29 4 -0.0584 1.0972 1.0988 0.89 0.14 29
5 0.1620 1.0924 1.1044 0.95 0.19 28 5 -0.0192 1.2056 1.2060 1.04 0.22 28
6 0.2184 1.2292 1.2484 1.05 0.23 27 6 -0.0012 1.4504 1.4504 1.22 0.25 27
7 0.3172 1.2232 1.2640 1.08 0.32 26 7 0.0224 1.4576 1.4576 1.24 0.31 26
8 0.3704 1.3216 1.3728 1.21 0.18 25 8 -0.0096 1.7308 1.7308 1.53 0.18 25
VAR(2) VAR(2), projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.1272 1.0056 1.0136 1.01 0.14 32 1 -0.1388 1.0012 1.0108 1.01 0.12 32

2 0.1744 1.0088 1.0240 1.07 0.13 31 2 -0.0508 1.0640 1.0652 1.11 0.14 31
3 0.4884 1.0036 1.1160 1.12 0.12 30 3 0.0548 1.1624 1.1636 1.17 0.16 30
4 0.7844 1.0888 1.3420 1.08 0.15 29 4 0.1924 1.3348 1.3488 1.09 0.14 29
5 1.0136 1.1516 1.5340 1.32 0.21 28 5 0.3032 1.5280 1.5580 1.34 0.21 28
6 1.1788 1.0872 1.6036 1.35 0.28 27 6 0.3832 1.4856 1.5340 1.29 0.22 27
7 1.3548 1.0676 1.7248 1.47 0.38 26 7 0.4896 1.6324 1.7044 1.45 0.30 26
8 1.4516 1.0744 1.8060 1.60 0.28 25 8 0.5588 1.7472 1.8344 1.62 0.22 25

Statistics based on 1- to 8-step-ahead forecasts of 1st difference of log of variable multiplied by 400, from 1999Q1 to 2006Q4.

Theil's U is ratio of shown RMSE to RMSE of no-change assumption.

Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window
with as many lags as steps ahead reported.

AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM, no residual projection: AWM used with flat residual projection

AWM, projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM + SVAR refers to the: AWM supplemented with equations for exogenous variables from an SVAR decomposition of the previous VAR
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Table A.10. Simulated Out-Of-Sample Projections with Recursive Re-
estimation, New Data, 1999Q1 to 2006Q4

GDP Deflator inflation

AWM, no residual projection AWM, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.3020 1.3504 1.3836 1.26 0.22 32 1 0.0344 1.4476 1.4480 1.32 0.21 32
2 -0.5600 1.3604 1.4712 1.27 0.17 31 2 -0.0128 1.5888 1.5892 1.37 0.16 31
3 -0.9260 1.2980 1.5944 2.00 0.31 30 3 -0.0752 1.4800 1.4820 1.86 0.25 30
4 -0.9436 1.2848 1.5940 1.50 0.21 29 4 -0.0592 1.5348 1.5360 1.45 0.15 29
5 -1.1796 1.2648 1.7296 1.38 0.13 28 5 -0.0340 1.6496 1.6500 1.32 0.09 28
6 -1.2792 1.1500 1.7200 1.67 0.30 27 6 -0.0580 1.4004 1.4016 1.36 0.21 27
7 -1.4508 1.2004 1.8832 1.47 0.18 26 7 -0.1244 1.4620 1.4672 1.15 0.16 26
8 -1.5528 1.3112 2.0324 1.47 0.16 25 8 -0.2196 1.6524 1.6672 1.20 0.22 25
AWM + SVAR, no residual projection AWM + SVAR, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.2800 1.3568 1.3856 1.26 0.22 32 1 0.0440 1.4676 1.4680 1.34 0.22 32
2 -0.4764 1.2160 1.3060 1.13 0.13 31 2 0.0272 1.4864 1.4868 1.28 0.15 31
3 -0.8636 1.0796 1.3828 1.78 0.27 30 3 -0.0592 1.2028 1.2040 1.51 0.19 30
4 -0.9768 1.2128 1.5576 1.47 0.23 29 4 -0.1168 1.3304 1.3356 1.26 0.17 29
5 -1.2932 1.3824 1.8928 1.51 0.23 28 5 -0.1700 1.4884 1.4980 1.20 0.15 28
6 -1.4560 1.4208 2.0344 1.98 0.56 27 6 -0.2832 1.1956 1.2288 1.20 0.27 27
7 -1.6740 1.6184 2.3284 1.82 0.37 26 7 -0.4580 1.5860 1.6508 1.29 0.26 26
8 -1.8160 1.5432 2.3832 1.72 0.38 25 8 -0.6528 1.6296 1.7556 1.27 0.28 25
AR(2) AR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.1976 0.9604 0.9808 0.89 0.07 32 1 0.0256 1.0452 1.0456 0.95 0.05 32
2 -0.2800 0.9384 0.9792 0.85 0.05 31 2 0.0720 1.1512 1.1536 1.00 0.05 31
3 -0.4240 0.6924 0.8120 1.02 0.15 30 3 0.0884 0.8144 0.8192 1.03 0.12 30
4 -0.5420 0.9356 1.0812 1.02 0.10 29 4 0.0824 1.3248 1.3276 1.25 0.11 29
5 -0.6108 0.9756 1.1508 0.92 0.10 28 5 0.1800 1.6152 1.6252 1.30 0.10 28
6 -0.7408 0.8664 1.1400 1.1 0.26 27 6 0.1880 1.4020 1.4144 1.38 0.14 27
7 -0.8660 1.0452 1.3572 1.06 0.19 26 7 0.1516 1.8148 1.8208 1.42 0.09 26
8 -0.9852 1.0376 1.4308 1.03 0.19 25 8 0.1908 2.1128 21212 1.53 0.09 25
ARX(2) with exogenous variables ARX(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 0.1296 1.1284 1.1360 1.04 0.12 32 1 -0.0196 1.1640 1.1644 1.06 0.10 32
2 0.1680 1.1784 1.1904 1.08 0.14 31 2 -0.0336 1.3116 1.3120 1.13 0.12 31
3 0.2368 1.2324 1.2552 1.57 0.29 30 3 -0.0412 1.3224 1.3228 1.66 0.29 30
4 0.3076 1.4108 1.4440 1.36 0.21 29 4 -0.0344 1.7144 1.7148 1.62 0.21 29
5 0.4392 1.4152 1.4816 1.18 0.22 28 5 0.0664 1.8340 1.8352 1.47 0.22 28
6 0.5160 1.4092 1.5008 1.46 0.27 27 6 0.1012 1.7688 1.7720 1.72 0.30 27
7 0.6212 1.4528 1.5800 1.24 0.19 26 7 0.1428 1.9516 1.9568 1.53 0.21 26
8 0.7152 1.4396 1.6072 1.16 0.17 25 8 0.2120 2.0608 2.0716 1.50 0.13 25
VAR(2) VAR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error [ Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.0880 1.0832 1.0868 0.99 0.15 32 1 -0.0872 0.9944 0.9980 0.91 0.11 32
2 0.1240 1.0876 1.0944 0.95 0.12 31 2 -0.0124 1.0628 1.0628 0.92 0.11 31
3 0.4216 1.0660 1.1464 1.44 0.25 30 3 0.1100 1.0452 1.0512 1.32 0.20 30
4 0.7196 1.0492 1.2724 1.20 0.19 29 4 0.2648 1.2132 1.2416 1.17 0.15 29
5 0.9684 0.8732 1.3040 1.04 0.14 28 5 0.4180 1.1384 1.2128 0.97 0.13 28
6 1.1440 0.9288 1.4736 1.43 0.38 27 6 0.5288 1.1760 1.2896 1.25 0.34 27
7 1.2988 1.0048 1.6424 1.29 0.27 26 7 0.6284 1.4412 1.5724 1.23 0.26 26
8 1.4316 0.9860 1.7384 1.26 0.19 25 8 0.7412 1.4516 1.6300 1.18 0.20 25
Statistics based on 1- to 8-step-ahead forecasts of 1st difference of log of variable multiplied by 400, from 1999Q1 to 2006Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window
with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM, no residual projection: AWM used with flat residual projection
AWM, projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM + SVAR refers to the: AWM supplemented with equations for exogenous variables from an SVAR decomposition of the previous VAR
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Table A.11. Simulated Out-Of-Sample Projections with Recursive Re-
estimation, New Data, 1999Q1 to 2006Q4

GDP Growth

AWM, no residual projection AWM, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.0704 0.4492 0.4547 1.52 0.22 32 1 0.0382 0.3973 0.3991 1.34 0.17 32
2 -0.1142 0.4510 0.4652 1.32 0.16 31 2 0.0114 0.4436 0.4438 1.26 0.13 31
3 -0.1675 0.4419 0.4726 1.12 0.17 30 3 -0.0161 0.4749 0.4752 1.13 0.15 30
4 -0.1924 0.4618 0.5003 1.12 0.13 29 4 -0.0385 0.5196 0.5210 117 0.13 29
5 -0.2225 0.4852 0.5338 1.21 0.10 28 5 -0.0579 0.5896 0.5925 1.34 0.10 28
6 -0.2673 0.4774 0.5471 1.20 0.09 27 6 -0.1002 0.6207 0.6288 1.38 0.12 27
7 -0.2920 0.4935 0.5734 1.14 0.08 26 7 -0.1192 0.6531 0.6639 1.32 0.13 26
8 -0.2697 0.4986 0.5669 1.08 0.07 25 8 -0.1127 0.6781 0.6874 1.31 0.12 25

AWM + SVAR, no residual projection AWM + SVAR, projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.|] N. Obs
1 -0.0722 0.4569 0.4625 1.55 0.22 32 1 0.0348 0.4014 0.4029 1.35 0.17 32
2 -0.1153 0.4680 0.4819 1.37 0.15 31 2 0.0043 0.4740 0.4741 1.35 0.13 31
3 -0.2081 0.4768 0.5202 1.28 0.16 30 3 -0.0586 0.5238 0.5270 1.25 0.19 30
4 -0.2694 0.5439 0.6070 1.36 0.15 29 4 -0.1212 0.5989 0.6110 1.37 0.20 29
5 -0.3266 0.5478 0.6378 1.45 0.19 28 5 -0.1839 0.6426 0.6684 1.62 0.16 28
6 -0.3607 0.4135 0.5487 1.21 0.25 27 6 -0.2527 0.5956 0.6470 1.42 0.14 27
7 -0.3604 0.3743 0.5195 1.08 0.21 26 7 -0.2927 0.5853 0.6544 1.30 0.10 26
8 -0.3184 0.3595 0.4802 0.91 0.19 25 8 -0.2955 0.5634 0.6362 1.21 0.07 25

AR(2) AR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs
1 -0.0322 0.2834 0.2853 0.96 0.11 32 1 0.0243 0.2980 0.2990 1.00 0.07 32
2 -0.0564 0.3176 0.3226 0.92 0.11 31 2 0.0211 0.3573 0.3580 1.02 0.06 31
3 -0.0729 0.3462 0.3538 0.84 0.10 30 3 0.0278 0.4116 0.4126 0.98 0.06 30
4 -0.1032 0.3344 0.3499 0.79 0.09 29 4 0.0114 0.4336 0.4338 0.97 0.08 29
5 -0.1340 0.3135 0.3409 0.77 0.12 28 5 -0.0131 0.4443 0.4445 1.01 0.07 28
6 -0.1624 0.2915 0.3336 0.73 0.15 27 6 -0.0373 0.4726 0.4741 1.04 0.07 27
7 -0.1821 0.2838 0.3372 0.67 0.11 26 7 -0.0596 0.4917 0.4953 0.98 0.05 26
8 -0.1845 0.2886 0.3426 0.65 0.08 25 8 -0.0695 0.5019 0.5067 0.96 0.04 25

ARX(2) with exogenous variables ARX(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.|] N. Obs
1 -0.2012 0.2968 0.3586 1.20 0.16 32 1 -0.0100 0.2743 0.2745 0.92 0.14 32
2 -0.2339 0.2962 0.3774 1.07 0.15 31 2 -0.0283 0.2911 0.2924 0.83 0.11 31
3 -0.2390 0.2982 0.3822 0.91 0.14 30 3 -0.0368 0.3066 0.3088 0.73 0.12 30
4 -0.2633 0.2958 0.3960 0.89 0.15 29 4 -0.0595 0.3376 0.3428 0.77 0.13 29
5 -0.2664 0.3005 0.4016 0.91 0.21 28 5 -0.0629 0.3420 0.3477 0.79 0.17 28
6 -0.2834 0.3005 0.4131 0.91 0.25 27 6 -0.0833 0.3509 0.3607 0.79 0.19 27
7 -0.2952 0.3102 0.4282 0.85 0.22 26 7 -0.1008 0.3676 0.3812 0.76 0.18 26
8 -0.2973 0.3143 0.4326 0.82 0.20 25 8 -0.1109 0.3655 0.3820 0.73 0.15 25

VAR(2) VAR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 0.1101 0.2540 0.2768 0.93 0.15 32 1 0.0958 0.2529 0.2705 0.91 0.12 32
2 0.1307 0.2432 0.2761 0.79 0.13 31 2 0.1104 0.2622 0.2845 0.81 0.11 31
3 0.1026 0.2299 0.2518 0.60 0.10 30 3 0.1069 0.2705 0.2909 0.69 0.10 30
4 0.0245 0.2606 0.2617 0.59 0.06 29 4 0.0670 0.2888 0.2965 0.67 0.08 29
5 -0.0570 0.2584 0.2646 0.60 0.10 28 5 0.0167 0.2761 0.2766 0.63 0.10 28
6 -0.1287 0.2520 0.2829 0.62 0.14 27 6 -0.0388 0.2656 0.2684 0.59 0.11 27
7 -0.1755 0.2631 0.3163 0.63 0.11 26 7 -0.0831 0.2877 0.2995 0.59 0.08 26
8 -0.1908 0.2609 0.3232 0.62 0.07 25 8 -0.1062 0.2895 0.3083 0.59 0.05 25

Statistics based on 1- to 8-step-ahead forecasts of 1st difference of log of variable multiplied by 100, from 1999Q1 to 2006Q4.

Theil's U is ratio of shown RMSE to RMSE of no-change assumption.

Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window

with as many lags as steps ahead reported.

AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.
AWM, no residual projection: AWM used with flat residual projection
AWM, projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.

AWM + SVAR refers to the: AWM supplemented with equations for exogenous variables from an SVAR decomposition of the previous VAR

ECB

Working Paper Series No 950

October 2008




Table A.12. Simulated Out-Of-Sample Projections, New Data, 1999Q1 to
2006Q4

GDP Deflator inflation

AWM, no residual projection AWM, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,] N.Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.3152 1.2468 1.2860 1.17 0.19 32 1 0.0232 1.3616 1.3620 1.24 0.20 32
2 -0.7352 1.2516 1.4516 1.25 0.15 31 2 -0.0280 1.4896 1.4900 1.29 0.15 31
3 -1.2544 1.1604 1.7088 2.14 0.31 30 3 -0.1160 1.2892 1.2944 1.62 0.23 30
4 -1.3744 1.1840 1.8144 1.71 0.19 29 4 -0.1288 1.4296 1.4356 1.35 0.14 29
5 -1.5804 1.2020 1.9852 1.59 0.17 28 5 -0.1116 1.5888 1.5924 1.27 0.11 28
6 -1.7632 1.1108 2.0840 2.03 0.44 27 6 -0.1528 1.3208 1.3296 1.29 0.21 27
7 -1.9456 1.1768 2.2740 1.78 0.25 26 7 -0.2284 1.4196 1.4380 1.13 0.16 26
8 -2.0916 1.2428 2.4328 1.76 0.27 25 8 -0.3264 1.6692 1.7008 1.23 0.26 25
AWM + SVAR, no residual projection AWM + SVAR, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.3144 1.2452 1.2840 1.17 0.19 32 1 0.0224 1.3600 1.3600 1.24 0.20 32
2 -0.6940 1.1696 1.3600 117 0.14 31 2 -0.0064 1.4196 1.4196 1.23 0.14 31
3 -1.1904 1.0596 1.5936 2.00 0.30 30 3 -0.0944 1.1284 1.1324 1.42 0.18 30
4 -1.2792 1.1636 1.7292 1.63 0.22 29 4 -0.1276 1.3388 1.3448 1.27 0.17 29
5 -1.4436 1.2504 1.9100 1.53 0.22 28 5 -0.1396 1.5212 1.5276 1.22 0.16 28
6 -1.5844 1.1896 1.9812 1.98 0.54 27 6 -0.2212 1.1456 1.1668 1.14 0.25 27
7 -1.7512 1.3116 2.1880 1.71 0.34 26 7 -0.3656 1.4784 1.5228 1.19 0.25 26
8 -1.8932 1.3192 2.3072 1.67 0.36 25 8 -0.5276 1.6516 1.7336 1.25 0.31 25
AR(2) AR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.2472 0.9500 0.9816 0.89 0.07 32 1 0.0248 1.0424 1.0428 0.95 0.05 32
2 -0.3540 0.9260 0.9916 0.86 0.06 31 2 0.0704 1.1480 1.1500 0.99 0.05 31
3 -0.5260 0.6900 0.8676 1.09 0.17 30 3 0.0868 0.8112 0.8160 1.02 0.12 30
4 -0.6632 0.9236 1.1372 1.07 0.11 29 4 0.0804 1.3168 1.3192 1.24 0.10 29
5 -0.7532 0.9612 1.2212 0.98 0.11 28 5 0.1764 1.6056 1.6152 1.29 0.10 28
6 -0.8984 0.8628 1.2460 1.21 0.31 27 6 0.1832 1.3908 1.4028 1.36 0.14 27
7 -1.0348 1.0248 1.4564 1.14 0.21 26 7 0.1472 1.7976 1.8036 1.41 0.09 26
8 -1.1644 1.0196 1.5476 1.12 0.22 25 8 0.1844 2.0928 2.1008 1.52 0.08 25
ARX(2) with exogenous variables ARX(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 0.2372 1.1472 1.1716 1.07 0.13 32 1 -0.0324 1.2148 1.2152 1.11 0.10 32
2 0.3068 1.1996 1.2384 1.07 0.14 31 2 -0.0404 1.4020 1.4024 1.21 0.13 31
3 0.4108 1.2496 1.3152 1.65 0.29 30 3 -0.0604 1.4376 1.4388 1.80 0.31 30
4 0.4948 1.3672 1.4540 1.37 0.19 29 4 -0.0628 1.8496 1.8508 1.74 0.22 29
5 0.6364 1.3284 1.4732 1.18 0.19 28 5 0.0328 2.0000 2.0004 1.60 0.24 28
6 0.7124 1.3132 1.4940 1.45 0.26 27 6 0.0580 1.9520 1.9528 1.90 0.33 27
7 0.8116 1.3068 1.5384 1.20 0.18 26 7 0.0872 2.1692 21712 1.70 0.22 26
8 0.8948 1.2780 1.5604 1.13 0.14 25 8 0.1480 2.3004 2.3052 1.67 0.14 25
VAR(2) VAR(2), projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.7596 1.1136 1.3480 1.28 0.20 32 1 -0.0928 1.0456 1.0496 0.96 0.13 32

2 0.0424 1.0552 1.0560 0.91 0.14 31 2 -0.0208 1.0852 1.0852 0.94 0.12 31
3 1.0332 1.1036 1.5116 1.89 0.33 30 3 0.1028 1.0440 1.0488 1.31 0.21 30
4 1.8172 1.1180 2.1336 2.01 0.26 29 4 0.2652 1.1948 1.2236 1.15 0.15 29
5 2.3524 1.0160 2.5624 2.05 0.26 28 5 0.4320 1.0908 1.1732 0.94 0.14 28
6 2.6668 1.0620 2.8704 2.79 0.72 27 6 0.5592 1.1068 1.2400 1.21 0.34 27
7 2.8624 1.0528 3.0500 2.39 0.41 26 7 0.6840 1.3496 1.5128 1.18 0.27 26
8 2.9640 1.0776 3.1540 2.28 0.43 25 8 0.8264 1.3512 1.5840 1.14 0.20 25

Statistics based on 1- to 8-step-ahead forecasts of 1st difference of log of variable multiplied by 400, from 1999Q1 to 2006Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.

Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window

with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.

AWM, no residual projection: AWM used with flat residual projection
AWM, projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.

AWM + SVAR refers to the: AWM supplemented with equations for exogenous variables from an SVAR decomposition of the previous VAR
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Table A.13. Simulated Out-Of-Sample Projections, New Data, 1999Q1 to
2006Q4

GDP Growth

AWM, no residual projection AWM, projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.[ N. Obs
1 -0.3702 0.4188 0.5590 1.87 0.31 32 1 0.0217 0.3929 0.3935 1.32 0.15 32
2 -0.4121 0.4121 0.5828 1.66 0.23 31 2 -0.0045 0.4291 0.4292 1.22 0.10 31
3 -0.4653 0.3966 0.6114 1.45 0.24 30 3 -0.0314 0.4435 0.4446 1.05 0.12 30
4 -0.4698 0.3942 0.6132 1.38 0.20 29 4 -0.0574 0.4652 0.4687 1.05 0.11 29
5 -0.4797 0.3936 0.6205 1.41 0.19 28 5 -0.0815 0.5105 0.5170 117 0.07 28
6 -0.5181 0.3500 0.6253 1.37 0.21 27 6 -0.1259 0.5039 0.5194 1.14 0.08 27
7 -0.5442 0.3560 0.6504 1.29 0.14 26 7 -0.1530 0.5107 0.5331 1.06 0.06 26
8 -0.5443 0.3702 0.6583 1.25 0.11 25 8 -0.1594 0.5299 0.5533 1.05 0.06 25

AWM + SVAR, no residual projection AWM + SVAR, projection by smooth level shift

Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.3697 0.4159 0.5564 1.86 0.31 32 1 0.0174 0.3909 0.3913 1.31 0.15 32
2 -0.3557 0.4403 0.5660 1.61 0.22 31 2 -0.0027 0.4558 0.4558 1.30 0.10 31
3 -0.3750 0.4298 0.5704 1.35 0.21 30 3 -0.0410 0.4843 0.4861 1.15 0.16 30
4 -0.3323 0.4501 0.5595 1.26 0.16 29 4 -0.0761 0.5396 0.5449 1.22 0.15 29
5 -0.3168 0.4350 0.5381 1.22 0.17 28 5 -0.1123 0.5791 0.5899 1.34 0.10 28
6 -0.3362 0.3642 0.4957 1.09 0.21 27 6 -0.1649 0.5587 0.5825 1.28 0.10 27
7 -0.3604 0.3579 0.5079 1.01 0.15 26 7 -0.2027 0.5591 0.5947 1.18 0.07 26
8 -0.3579 0.3623 0.5092 0.97 0.13 25 8 -0.2110 0.5735 0.6111 1.16 0.06 25

AR(2) AR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.0364 0.2836 0.2859 0.96 0.11 32 1 0.0251 0.2973 0.2984 1.00 0.07 32
2 -0.0599 0.3160 0.3216 0.92 0.11 31 2 0.0222 0.3560 0.3567 1.02 0.06 31
3 -0.0761 0.3428 0.3511 0.83 0.10 30 3 0.0285 0.4103 0.4113 0.98 0.06 30
4 -0.1053 0.3292 0.3456 0.78 0.09 29 4 0.0118 0.4326 0.4328 0.97 0.08 29
5 -0.1348 0.3068 0.3351 0.76 0.12 28 5 -0.0129 0.4435 0.4437 1.01 0.08 28
6 -0.1620 0.2829 0.3260 0.72 0.15 27 6 -0.0374 0.4712 0.4727 1.04 0.07 27
7 -0.1806 0.2739 0.3281 0.65 0.11 26 7 -0.0598 0.4900 0.4937 0.98 0.05 26
8 -0.1820 0.2790 0.3331 0.63 0.08 25 8 -0.0694 0.5008 0.5056 0.96 0.04 25

ARX(2) with exogenous variables ARX(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.] N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.| N. Obs
1 -0.3214 0.3321 0.4622 1.55 0.21 32 1 0.0046 0.2913 0.2914 0.98 0.15 32
2 -0.3476 0.3214 0.4734 1.35 0.21 31 2 -0.0130 0.3056 0.3059 0.87 0.11 31
3 -0.3265 0.3080 0.4488 1.06 0.17 30 3 -0.0212 0.3151 0.3158 0.75 0.12 30
4 -0.3443 0.2947 0.4532 1.02 0.19 29 4 -0.0436 0.3470 0.3497 0.79 0.13 29
5 -0.3434 0.2997 0.4558 1.08 0.25 28 5 -0.0466 0.3483 0.3514 0.80 0.17 28
6 -0.3566 0.2973 0.4643 1.02 0.30 27 6 -0.0696 0.3505 0.3574 0.79 0.19 27
7 -0.3603 0.3022 0.4703 0.93 0.26 26 7 -0.0854 0.3706 0.3803 0.75 0.18 26
8 -0.3591 0.3081 0.4731 0.90 0.23 25 8 -0.0985 0.3654 0.3784 0.72 0.15 25

VAR(2) VAR(2), projection by smooth level shift
Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev,| N. Obs | Step Mean Error S.D. Error RMS Error | Theil U |Std. Dev.[ N. Obs
1 0.3482 0.3113 0.4670 1.56 0.28 32 1 0.1036 0.2605 0.2804 0.94 0.13 32
2 0.2590 0.3052 0.4003 1.14 0.24 31 2 0.1200 0.2665 0.2923 0.83 0.12 31
3 0.1498 0.2218 0.2676 0.63 0.13 30 3 0.1123 0.2692 0.2916 0.69 0.10 30
4 -0.0312 0.2436 0.2456 0.55 0.06 29 4 0.0689 0.2827 0.2910 0.65 0.08 29
5 -0.2067 0.2615 0.3334 0.76 0.16 28 5 0.0193 0.2644 0.2651 0.60 0.09 28
6 -0.3359 0.2605 0.4251 0.93 0.27 27 6 -0.0323 0.2517 0.2538 0.56 0.11 27
7 -0.4040 0.2599 0.4804 0.95 0.25 26 7 -0.0712 0.2790 0.2880 0.57 0.07 26
8 -0.4138 0.2616 0.4895 0.93 0.22 25 8 -0.0906 0.2929 0.3066 0.58 0.04 25

Statistics based on 1- to 8-step-ahead forecasts of 1st difference of log of variable multiplied by 100, from 1999Q1 to 2006Q4.
Theil's U is ratio of shown RMSE to RMSE of no-change assumption.
Standard Deviation of Theil's U is calculated by a delta-method expansion based on the HAC-corrected variance-covariance of the residuals squared, using a window

with as many lags as steps ahead reported.
AR(2): AR(2) in first difference with a constant.
AR(2) with exogenous variables: AR(2) in first difference with a constant and fixed exogenous regressors as used for the AWM.

AWM, no residual projection: AWM used with flat residual projection

AWM, projection by smooth level shift: AWM with residuals projected as average of 4 quarters previous to beginning of forecast.
AWM + SVAR refers to the: AWM supplemented with equations for exogenous variables from an SVAR decomposition of the previous VAR
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ANNEX 3: RECURSIVELY ESTIMATED PARAMETERS

Simulated out-of-sample forecasts are conventionally made using no information from periods within the
forecast horizon, except maybe for the use of final, fully-revised datasets maybe not available at the time.
The exercise described in the main text actually did use information coming from the forecast period, i.e. the
exchange and interest rates and external and fiscal variables, but re-estimating the model was nevertheless
seen as a crucial part of the exercise. This was so because of the desire to separate as far as possible forecast
failure due to unstable parameters and due to deterministic shifts in the data. In order to achieve this, the
model was re-estimated for the periods 1995Q4 to 1999Q3 using either the standard equations in the model
or simplified versions in which dummy variables for the period were dropped. The model was found to be
broadly stable for the period, with parameters in general changing not much. As a consequence, forecast
performance compared to benchmark models probably depends considerably more on residual projection

than on parameter instability.

Some insight into stability properties of the parameters of the model can be gained with the table
and graph included in this annex. The table records the value of the recursively re-estimated parameters for
the period, showing only 4th quarter results to condense information. Results reported under the heading
‘original’ recall original values for the parameters. Results are reported naming parameters following the
convention in Fagan et al. (op. cit.), with the exception of consumption and stock equations, which have
been re-specified. Parameters shown under ‘original’ may differ slightly from those reported in the previous

reference due to slight changes in the database.20

The graph shows, for the period under analysis, recursive estimation residuals superimposed on a
same graph. Equations are labelled according to the name of the variable they define, again following
conventions set in Fagan et al. (op. cit.). The evident overlap of most residuals is another indication that

equations were relatively stable throughout the period.

2% The database used was a version of the original database distributed with Fagan ez al. (2001) and downloadable from www.ecb.int.
The database used here was extended until 1999Q4 and was used in Detken et al. (2002). The extension involved slight historical
revisions to some variables, which explains for the mentioned differences.
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Table A.1. Selection of Recursive Estimated Parameters
Equation Parameter Original 1995q4 199694 199794 1998q4 1999q4
Employment LNN.DLLNT 0.692276 0.683772 0.682438 0.691779 0.713435 0.691929
LNN.DLYERADJ 0.180177 0.183676 0.183327 0.180310 0.167283 0.170650
LNN.DLWRRADJ -0.120938 -0.129171 -0.127726 -0.121410 -0.120343 -0.119579
LNN.DLWRRADJ1 -0.125018 -0.127474 -0.127635 -0.125020 -0.121545 -0.128524
LNN.D872 0.004483 0.004585 0.004609 0.004490 0.004496 0.004343
LNN.D841 -0.004429 -0.004487 -0.004503 -0.004431 -0.004187 -0.004536
LNN.ECM -0.081495 -0.082260 -0.082408 -0.081525 -0.082152 -0.068280
Investment ITR.D894 0.020823 0.020511 0.020930 0.020983 0.021269 0.021455
ITR.DITY1 0.168826 0.247538 0.174441 0.167245 0.142753 0.141033
ITR.ECM 0.539096 0.504877 0.558784 0.554734 0.591342 0.606284
ITR.ADJ 0.012310 0.012285 0.012396 0.012489 0.012645 0.012848
Wages WRN.DLWRCQ4 0.273892 0.263043 0.255321 0.250201 0.252917 0.282311
WRN.DDLPCD -0.919736 -0.797606 -0.810661 -0.814063 -0.781790 -0.764833
WRN.DDLPCD1 -0.571055 -0.390019 -0.391060 -0.401781 -0.397747 -0.371002
WRN.DDLPCD2 -0.470158 -0.370688 -0.374635 -0.376440 -0.422863 -0.426678
WRN.DDLPCD3 -0.334405 -0.268985 -0.280349 -0.294451 -0.289109 -0.301979
WRN.DDLPROD -0.562628 -0.549744 -0.545439 -0.537485 -0.547781 -0.554636
WRN.DDLPROD1 -0.456273 -0.437333 -0.436445 -0.430985 -0.447532 -0.460392
WRN.DDLPROD2 -0.399817 -0.392926 -0.391432 -0.393959 -0.410047 -0.429397
WRN.DDLPROD3 -0.261245 -0.272927 -0.272842 -0.272394 -0.297906 -0.315672
WRN.LURX_GAP1 -0.014744 -0.021272 -0.021843 -0.022551 -0.022536 -0.021635
WRN.181Q1 -0.004171 -0.010014 -0.010113 -0.010121 -0.010444 -0.010449
WRN.184Q2 -0.012449 -0.016239 -0.016169 -0.015979 -0.016072 -0.015970
GDP deflator YFD.CST 0.003920 0.003995 0.003993 0.003920 0.003963 0.004016
YFD.DLYFD1 0.229684 0.226243 0.225394 0.229684 0.227293 0.219794
YFD.DLULT 0.246086 0.251419 0.249390 0.246086 0.245890 0.230702
YFD.DLULTH 0.083541 0.078281 0.082691 0.083541 0.090131 0.102890
YFD.DLULT2 0.155765 0.157398 0.155377 0.155765 0.151721 0.159442
YFD.DLMTD1 0.031486 0.032161 0.031956 0.031486 0.031346 0.032186
YFD.ECM -0.045006 -0.042939 -0.043548 -0.045006 -0.043234 -0.041669
Consumption deflatof PCD.ECM.LYED 0.940751 0.992626 0.991629 0.990656 0.989898 0.989107
PCD.ECM.LMTD 0.059249 0.007374 0.008371 0.009344 0.010102 0.010893
PCD.CST 0.001263 0.000652 0.000717 0.000709 0.000740 0.000763
PCD.DLPCD4 0.188246 0.208861 0.208447 0.207154 0.205507 0.203585
PCD.DLYED 0.445458 0.450697 0.448685 0.450976 0.448738 0.441644
PCD.DLYED1 0.226345 0.243509 0.242692 0.242073 0.243997 0.252726
PCD.DLMTD 0.071909 0.069102 0.069417 0.070809 0.070087 0.069731
PCD.DLMTD1 0.025380 0.026242 0.026219 0.024868 0.025318 0.024661
PCD.DLCOMPREEN| 0.004465 0.004483 0.004479 0.004373 0.004510 0.004672
PCD.ECM -0.060559 -0.042746 -0.043246 -0.043550 -0.043238 -0.043549
PCD.DI82Q1 -0.003529 -0.003579 -0.003572 -0.003584 -0.003577 -0.003566
PCD.DI92Q4 -0.002979 -0.003081 -0.003081 -0.003084 -0.003086 -0.003108
PCD.|77Q4178Q1 -0.003981 -0.004023 -0.004018 -0.004017 -0.004007 -0.004006
Investment deflator |ITD.CST 0.004648 0.005854 0.004583 0.004642 0.004919 0.004811
ITD.DDLYFD -0.368482 -0.367276 -0.363803 -0.367348 -0.355295 -0.365059
ITD.DDLMTD 0.111071 0.109045 0.109335 0.110476 0.111505 0.113977
ITD.DLITDYFD1 0.313957 0.309011 0.309662 0.310311 0.306023 0.296158
ITD.DLITDYFD4 0.207904 0.206759 0.211355 0.210999 0.219258 0.238621
ITD.DLITDYFD7 0.169020 0.168403 0.165539 0.168244 0.165021 0.166495
ITD.DLITDMTD1 -0.116393 -0.118348 -0.116749 -0.116844 -0.116678 -0.118108
ITD.DLITDMTD5 0.047888 0.046081 0.048674 0.048114 0.048097 0.049652
ITD.DLITDMTD6 0.037784 0.035204 0.036635 0.037602 0.037548 0.040126
ITD.ECM1 -0.052662 -0.062607 -0.051976 -0.052571 -0.055305 -0.054783
ITD.ECM2 -0.012261 -0.012873 -0.012128 -0.012233 -0.012725 -0.012951
Consumption PCR.CST -0.179412 -0.214655 -0.219753 -0.223782 -0.219428 -0.204340
PCR.DLPYR 0.650734 0.643854 0.645894 0.650466 0.646259 0.638657
PCR.DLSTR -0.342388 -0.355225 -0.365362 -0.374164 -0.370326 -0.367107
PCR.DURX -0.629524 -0.788679 -0.782355 -0.788942 -0.822881 -0.810950
PCR.ECM.LPYR -0.101508 -0.113101 -0.112870 -0.114631 -0.110789 -0.102438
PCR.ECM.LWLR -0.051959 -0.062463 -0.064086 -0.065255 -0.064121 -0.059840
PCR.193Q1 -0.008909 -0.008790 -0.008816 -0.008692 -0.008790 -0.009047
Variation of Stocks |LSR.CST -0.000243 -0.005395 -0.005560 -0.005646 -0.005734 -0.005653
LSR.DLSR1 0.737271 0.754211 0.755744 0.750514 0.752620 0.755519
LSR.DLSTR -0.146929 -0.143087 -0.144643 -0.125457 -0.130754 -0.136393
LSR.DYER 0.314350 0.306871 0.308657 0.306798 0.302035 0.303639
LSR.ECM -0.034750 -0.025073 -0.025249 -0.025958 -0.026715 -0.026384
LSR.LSRYER -0.098435 -0.097457 -0.097609 -0.098435 -0.099109 -0.098928
Exports XTR.CST 0.222518 0.280269 0.247217 0.202111 0.216763 0.219860
XTR.DLXTDYWDX1 -0.377152 -0.379655 -0.369044 -0.368404 -0.358968 -0.363958
XTR.DLXTRYWRX7 0.156410 0.172929 0.197856 0.148231 0.143344 0.135790
XTR.ECM -0.121453 -0.148866 -0.133110 -0.111407 -0.118791 -0.120393
XTR.LXTDYWDX1 -0.097625 -0.074571 -0.084366 -0.104097 -0.100995 -0.101605
XTR.TIME 0.000989 0.001090 0.001029 0.000937 0.000979 0.000990
Imports MTR.ECM.LMTDYELQ -0.285416 -0.266180 -0.271016 -0.285416 -0.303068 -0.321489
MTR.ECM.TIME 0.003407 0.003288 0.003311 0.003407 0.003469 0.003528
MTR.CST -0.158258 -0.169305 -0.171293 -0.158258 -0.138373 -0.133373
MTR.DLFDD 2.021422 1.986599 1.995031 2.021422 2.034089 2.038034
MTR.ECM -0.086131 -0.092455 -0.093544 -0.086131 -0.075083 -0.072275
MTR.D743 0.016717 0.016817 0.016916 0.016717 0.016185 0.016313
Export deflator XTD.CST -0.004465 -0.003598 -0.004147 -0.004465 -0.004735 -0.004804
XTD.DLXTD1 0.236281 0.246397 0.242103 0.236281 0.249249 0.260540
XTD.DLYED 0.720610 0.671128 0.701749 0.720601 0.725697 0.725177
XTD.DLEEN 0.119249 0.122203 0.122809 0.119249 0.120750 0.119498
XTD.DLMTD 0.219660 0.221619 0.219710 0.219660 0.213592 0.205837
XTD.ECM -0.034589 -0.037129 -0.036290 -0.034589 -0.032859 -0.031714
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Figure A.1. Recursive Residuals
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